|
$1$) ĐK : $x > 0$ $\begin{array}{l} \,\,\,\,\,\,{3^{\log x + 2}} < {3^{\log {x^2} + 5}} - 2\\ \Leftrightarrow 9.{3^{\log x}} < {3^5}{.3^{2\log x}} - 2\\ \Leftrightarrow \left\{ \begin{array}{l} 9t < 243{t^2} - 2\\ t = {3^{\log x}},t > 0 \end{array} \right. \Leftrightarrow t > \frac{1}{9}\\ \Leftrightarrow {3^{\log x}} > \frac{1}{9} = {3^{ - 2}} \Leftrightarrow \log x > - 2\\ \Leftrightarrow x > {10^{ - 2}}\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow x > \frac{1}{{100}}\\ \end{array}$ $2$) Đổi về cơ số $10$ ta có: $\left( {\frac{{\log 5 - \log 4}}{{\log 5.\log 4}}} \right)\log x \ge 1\,\,\\\,\,\,$$ \Leftrightarrow
$ $x \ge {10^{\frac{{\log 5.\log 4}}{{\log 5 - \log 4}}}}$ $3$) $t = {\log _4}\frac{{3x - 1}}{{x + 1}},\,\,\,t > 0$ Suy ra $0 < t \le 1\,\,\,\,\,$
$ \Leftrightarrow
$ $\left[ \begin{array}{l} x \le - 5\\ x > 1 \end{array} \right.$
|