$1/$ Cho tam giác $ABC$ thỏa mãn điều kiện: ${\sin ^2}A + {\sin ^2}B + 2\sin A\sin B = \frac{9}{4} + \cos C + \cos^2C$
Chứng minh rằng tam giác $ABC$ cân với góc ở đỉnh $C = {120^0}$
$2/$ Cho tam giác $ABC$ thỏa mãn điều kiện:  $\sin \frac{{A - B}}{2} + \sin \frac{{A - C}}{2} + \sin \frac{{3A}}{2} = \frac{3}{2}$
Chứng minh rằng tam giác $ABC$ cân với góc ở đỉnh $A = {100^0}$
$1/$ Từ giả thiết ta có:    ${(\sin A + \sin B)^2} = {(\frac{3}{2} + \cos C)^2}$
                                $ \Leftrightarrow \sin A + \sin B = \frac{3}{2} + \cos C$
      ( vì $\sin A + \sin B > 0,\frac{3}{2} + \cos C > 0$ trong mọi tam giác )
   $\begin{array}{l}
 \Leftrightarrow 2\sin \frac{{A + B}}{2}c{\rm{os}}\frac{{A - B}}{2} = \frac{3}{2} + 2{\cos ^2}\frac{C}{2} - 1\\
 \Leftrightarrow 4{\cos ^2}\frac{C}{2} - 4\cos \frac{C}{2}c{\rm{os}}\frac{{A - B}}{2} + 1 = 0\\
 \Leftrightarrow {(2\cos \frac{C}{2} - c{\rm{os}}\frac{{A - B}}{2})^2} + {\sin ^2}\frac{{A - B}}{2} = 0\\
 \Leftrightarrow \left\{ \begin{array}{l}
\sin \frac{{A - B}}{2} = 0(1)\\
2\cos \frac{C}{2} - c{\rm{os}}\frac{{A - B}}{2} = 0(2)
\end{array} \right.
\end{array}$
Từ ($1$) suy ra $A=B$, thay vào ($2$) có   $c{\rm{os}}\frac{C}{2} = \frac{1}{2} \Rightarrow C = {120^0}$
Từ đó  suy ra (đpcm)
$2/$ Ta có  $3A = 3\pi  - 3(B + C) \Rightarrow \frac{{3A}}{2} = \frac{{3\pi }}{2} - \frac{{3(B + C)}}{2} \Rightarrow \sin \frac{{3A}}{2} =  - c{\rm{os}}\frac{{3(B + C)}}{2}$
    Từ đó suy ra        $\sin \frac{{A - B}}{2} + \sin \frac{{A - C}}{2} + \sin \frac{{3A}}{2} = \frac{3}{2}$
          $\begin{array}{l}
 \Leftrightarrow 2\sin \frac{{2A - (B + C)}}{4}c{\rm{os}}\frac{{B - C}}{4} - c{\rm{os}}\frac{{3(B + C)}}{2} = \frac{3}{2}\\
 \Leftrightarrow 2\sin \frac{{2\pi  - 3(B + C)}}{{}}4c{\rm{os}}\frac{{B - C}}{4} - c{\rm{os}}\frac{{3(B + C)}}{2} = \frac{3}{2}\\
 \Leftrightarrow 2\cos \frac{{3(B + C)}}{4}c{\rm{os}}\frac{{B - C}}{4} - 2{\cos ^2}\frac{{3(B + C)}}{4} + 1 = \frac{3}{2}
\end{array}$
     $ \Leftrightarrow 2{\cos ^2}\frac{{3(B + C)}}{4} - c{\rm{os}}\frac{{B - C}}{4}c{\rm{os}}\frac{{3(B + C)}}{4} + \frac{1}{2} = 0   (1)$
  Từ ($1$) suy ra phương trình     $2{x^2} - 2\cos \frac{{B - C}}{4}x + \frac{1}{2} = 0$
   Phải có nghiệm, tức $\Delta ' = c{\rm{o}}{{\rm{s}}^2}\frac{{B - C}}{4} - 1 \ge 0 \Leftrightarrow c{\rm{o}}{{\rm{s}}^2}\frac{{B - C}}{4} \ge 1           (2)$
 Mặt khác    $c{\rm{o}}{{\rm{s}}^2}\frac{{B - C}}{4} \le 1             (3)$
 Từ ($2$) và ($3$) suy ra       $c{\rm{o}}{{\rm{s}}^2}\frac{{B - C}}{2} = 1$
             $ \Leftrightarrow c{\rm{os}}\frac{{B - C}}{2} = 1$  (do $\left| {\frac{{B - C}}{4}} \right| < {90^0}$)
           $ \Leftrightarrow B = C                                                            (4)$
 Thay ($4$) vào ($1$) ta có    $c{\rm{os}}\frac{{3(B + C)}}{4} = \frac{1}{2} \Leftrightarrow c{\rm{os}}\frac{{3B}}{2} = \frac{1}{2} \Leftrightarrow \frac{{3B}}{2} = {60^0} \Leftrightarrow B = {40^0}$
 Từ đó suy ra (đcpm)

Thẻ

Lượt xem

1010
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003