Cho tam giác $ABC$ không có góc tù và thỏa mãn điều kiện:
                       $\frac{{\sin A + \sin B + \sin C}}{{\cos A + \cos B + \cos C}} = \frac{{\sqrt 2 }}{2} + 1$
             CMR tam giác $ABC$ vuông cân
Không mất tổng quát, giả sử  $A=max(A,B,C)$
Từ giả thiết suy ra      $\frac{\pi }{3} \le A \le \frac{\pi }{2}$
Ta có          $\frac{{\sin A + \sin B + \sin C}}{{\cos A + \cos B + \cos C}} = \frac{{\sin A + 2\sin \frac{{B + C}}{2}c{\rm{os}}\frac{{B - C}}{2}}}{{\cos A + 2\cos \frac{{B + C}}{2}c{\rm{os}}\frac{{B - C}}{2}}}$
    $ = \frac{{\sin A + 2\cos \frac{A}{2}c{\rm{os}}\frac{{B - C}}{2}}}{{\cos A + 2\sin \frac{A}{2}c{\rm{os}}\frac{{B - C}}{2}}}               (1)$
Với A cố định  ($\frac{\pi }{3} \le A \le \frac{\pi }{2}$), xét hàm số sau :
    $f(x) = \frac{{\sin A + 2x\cos \frac{A}{2}}}{{\cos A + 2x\sin \frac{A}{2}}}$  với  $0 < x \le 1$
    $f'(x) = \frac{{2\cos \frac{{3A}}{2}}}{{{{(\cos A + 2x\sin \frac{A}{2})}^2}}}                   (2)$
Vì  $\frac{\pi }{3} \le A \le \frac{\pi }{2} \Rightarrow \frac{\pi }{2} \le \frac{{3A}}{2} \le \frac{{3\pi }}{4} \Rightarrow c{\rm{os}}\frac{{3A}}{2} \le 0$
Do đó  $f'(x) \le 0\forall 0 < x \le 1 \Rightarrow f(x) \le f(1)\forall 0$
Vì $0 < c{\rm{os}}\frac{{B - C}}{2} \le 1$ và  $f(1) = \frac{{\sin A + 2\cos \frac{A}{2}}}{{\cos A + 2\sin \frac{A}{2}}}$,nên từ $(1)$ suy ra :
              $\frac{{\sin A + \sin B + \sin C}}{{\cos A + \cos B + \cos C}} \le \frac{{\sin A + 2\cos \frac{A}{2}}}{{\cos A + 2\sin \frac{A}{2}}}                        (3)$
Dấu “$=$” xảy ra khi $B=C$
Bây giờ xét hàm số    $g(A) = \frac{{\sin A + 2\cos \frac{A}{2}}}{{\cos A + 2\sin \frac{A}{2}}}$ với  $\frac{\pi }{2} \le A \le \frac{\pi }{3}$
  $g'(A) = \frac{{\sin \frac{{3A}}{2} - 1}}{{{{(\cos A + 2\sin \frac{A}{2})}^2}}} \le 0$
Vậy $g(A$) là hàm nghịch biến trên $\left[ {\frac{\pi }{3}.\frac{\pi }{2}} \right]$,do đó
    $g(A) \ge g(\frac{\pi }{2}) = \frac{{1 + \sqrt 2 }}{{\sqrt 2 }} = 1 + \frac{{\sqrt 2 }}{2}$
     $\Rightarrow \frac{{\sin A + 2\cos \frac{A}{2}}}{{\cos A + 2\sin \frac{A}{2}}} \ge 1 + \frac{{\sqrt 2 }}{2}                              (4)$
Dấu “$=$” xảy ra khi $A = \frac{\pi }{2}$
Từ $(3) (4)$ ta có   $\frac{{\sin A + \sin B + \sin C}}{{\cos A + \cos B + \cos C}} \ge 1 + \frac{{\sqrt 2 }}{2}                      (5)$
Dâu “$=$” xảy ra khi $B=C,A = \frac{\pi }{2}$
Từ giả thiết suy ra trong ($5$) có dấu “$=$”, từ đó suy ra (đpcm)
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003