Cho tam giác $ABC$ không có góc tù và thỏa mãn :
                     $\frac{{{a^2}(b + c) + {b^2}(a + c)}}{{abc}} = 2 + \sqrt 2 $, ở đây $c=max(a,b,c)$
             CMR tam giác $ABC$ vuông cân
Ta có          $\frac{{{a^2}(b + c) + {b^2}(a + c)}}{{abc}} = \frac{{c({a^2} + {b^2}) + ab(a + b)}}{{abc}} = \frac{{{a^2} + {b^2}}}{{ab}} + \frac{{a + b}}{c}    (1)$
Áp dụng định lý hàm số cosin, ta có  ${c^2} = {a^2} + {b^2} - 2ab\cos C$
Nên từ ($1$) ta có   $\frac{{{a^2}(b + c) + {b^2}(a + c)}}{{abc}} = \frac{{{c^2}}}{{ab}} + 2\cos C + \frac{{a + b}}{c}                        (2)$
Từ ($2)$ suy ra        $\frac{{{a^2}(b + c) + {b^2}(a + c)}}{{abc}} \ge \frac{{{c^2}}}{{ab}} + 2\cos C + \frac{{2\sqrt {ab} }}{c}                     (3)$
Dấu “$=$” xảy ra khi $a=b$
BỔ ĐỀ: Trong tam giác $ABC$ mà $c=max(a,b,c)$ thì :
                    $\frac{{{c^2}}}{{ab}} + \frac{{2\sqrt {ab} }}{c} \ge 2 - 2\cos C + \frac{1}{{\sin \frac{C}{2}}}$
             Thật vậy, do     ${c^2} = {a^2} + {b^2} - 2ab\cos C \ge 2ab - 2ab\cos C$
                                 $ \Rightarrow {c^2} \ge 2ab(1 - \cos C)$
                                 $ \Rightarrow \frac{c}{{\sqrt {ab} }} \ge \sqrt {2(1 - \cos C)}                                         (4)$
           Vì  $c = m{\rm{ax}}(a,b,c) \Rightarrow C = m{\rm{ax}}(A,B,C) \Rightarrow C \ge \frac{\pi }{3} \Rightarrow \cos C \le \frac{1}{2}$
            Do đó, từ ($4$) suy ra            $\sqrt {2(1 - \cos C)}  \ge 1                          (5)$
            Xét hàm số    $f(x) = {x^2} + \frac{2}{x}$ với $x \ge 1$
                                   $f'(x) = 2x - \frac{2}{{{x^2}}} \ge 0\forall x \ge 1$
            Do đó hàm số đồng biến khi $x \ge 1$, vì thế từ $(4)$ và ($5$),ta có
                                    $f(\frac{c}{{\sqrt {ab} }}) \ge f(\sqrt {2(1 - \cos C)} )$
                                 $ \Rightarrow \frac{{{c^2}}}{{ab}} + \frac{{2\sqrt {ab} }}{c} \ge 2(1 - \cos C) + \frac{2}{{\sqrt {2(1 - \cos C)} }}$
                                 $\Rightarrow \frac{{{c^2}}}{{ab}} + \frac{{2\sqrt {ab} }}{c} \ge 2 - 2\cos C + \frac{1}{{\sin \frac{C}{2}}}                  (6)$
Dấu “$=”$ trong ($6)$ xảy ra khi $a=b$    
BỔ ĐỀ được chứng minh.
Bây giờ từ $(3)$ và ($6$) có    $\frac{{{a^2}(b + c) + {b^2}(a + c)}}{{abc}} \ge 2 + \frac{1}{{\sin \frac{C}{2}}}              (7)$
Dấu “$=$” xảy ra khi $a=b$
Vì $\frac{\pi }{3} \le C \le \frac{\pi }{2} \Rightarrow \frac{\pi }{6} \le \frac{C}{2} \le \frac{\pi }{4} \Rightarrow \sin \frac{C}{2} \le \frac{{\sqrt 2 }}{2}$
Do đó $2 + \frac{1}{{\sin \frac{C}{2}}} \ge 2 + \sqrt 2                                              (8)$
Dấu “$=$” xảy ra khi  $C = \frac{\pi }{2}$
Từ $(7)(8)$ suy ra           $\frac{{{a^2}(b + c) + {b^2}(a + c)}}{{abc}} \ge 2 + \sqrt 2 (9)$
Dấu “$=$” xảy ra khi       $a=b$,$C = \frac{\pi }{2}$
Từ giả thiết suy ra trong $(9$) xảy ra dấu “$=$”, từ đó suy ra (đpcm)
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003