Cho tam giác ABC, gọi ${A_1},{B_1},{C_1}$ lần lượt là các điểm đối xứng của $A,B,C$ qua $BC,CA,AB$ tương ứng. CMR: ${A_1},{B_1},{C_1}$ thẳng hàng $ \Leftrightarrow \cos A\cos B\cos C = \frac{{ - 3}}{8}$


 
Vẽ $3$ chiều cao $AA’,BB’,CC’$
Đặt $BC=a,AC=b,AB=c$,$\overrightarrow {AB}  = m,\overrightarrow {AC}  = n$
Khi đó theo phép tính véctơ, ta có
$\overrightarrow {AA'}  = \overrightarrow m  + \frac{{c\cos B}}{a}(\overrightarrow n  - \overrightarrow m ) = \frac{{c\cos B}}{a}\overrightarrow n  = \frac{{b\cos C}}{a}\overrightarrow m (1)$
Suy ra :
$\overrightarrow {A{A_1}}  = 2\overrightarrow {AA'}  = \frac{{2c\cos B}}{a}\overrightarrow n  + \frac{{2b\cos C}}{a}\overrightarrow m $
Ta lại có $\overrightarrow {AB'}  = \frac{{c\cos A}}{b}\overrightarrow n  \Rightarrow \overrightarrow {BB'}  = \frac{{c\cos A}}{b}\overrightarrow n  - \overrightarrow m $
Suy ra $\overrightarrow {A{B_1}}  = \overrightarrow {AB}  + \overrightarrow {B{B_1}}  = \overrightarrow {AB}  + 2\overrightarrow {BB} ' = \frac{{2c\cos A}}{b}\overrightarrow n  - \overrightarrow m (2)$
Tương tự ta có  $\overrightarrow {A{C_1}}  = \frac{{2b\cos A}}{c}\overrightarrow m  - \overrightarrow {n}  (3)  $
Từ $(1)(2)(3)$ suy ra
$\begin{array}{l}
\left( {\frac{{2c\cos B}}{a} - \frac{{2c\cos A}}{b}} \right)\left( {\frac{{2b\cos C}}{a} - \frac{{2b\cos A}}{c}} \right) = \left( {\frac{{2b\cos A}}{a} + 1} \right)\left( {\frac{{2c\cos B}}{a} + 1} \right)\\
\left( {\frac{{2c\cos B}}{a} + 1} \right) + \left( {\frac{{2b\cos C}}{a} - \frac{{2b\cos A}}{c}} \right)
\end{array}$
Vậy ${A_1},{B_1},{C_1}$ thẳng hàng$ \Leftrightarrow \overrightarrow {{B_1}{A_1}} ,\overrightarrow {{C_1}{A_1}} $ cùng phương
                               $ \Leftrightarrow \left( {\frac{{2c\cos B}}{a} - \frac{{2c\cos A}}{b}} \right)\left( {\frac{{2b\cos C}}{a} - \frac{{2b\cos A}}{c}} \right) = \left( {\frac{{2b\cos A}}{a} + 1} \right)\left( {\frac{{2c\cos B}}{a} + 1} \right)$
$\begin{array}{l}
 \Leftrightarrow 4(b\cos B - a\cos A)(c\cos C - a\cos A) = (2b\cos C + a)(2c\cos B + a)\\
 \Leftrightarrow  - 4a\cos A(b\cos B + c\cos C) + 4{a^2}c{\rm{o}}{{\rm{s}}^2}A = 2a(b\cos C + c\cos B) + {a^2}\\
 \Leftrightarrow  - 2\cos A(\sin 2B + \sin 2C) + 4\sin Ac{\rm{o}}{{\rm{s}}^2}A = 3\sin C
\end{array}$
(định lý hàm số sin)
$\begin{array}{l}
 \Leftrightarrow  - 4\cos A\sin Ac{\rm{os}}(B - C) + 4\sin Ac{\rm{o}}{{\rm{s}}^2}A = 3\sin A\\
 \Leftrightarrow 4\cos A(c{\rm{os}}(B - C) - \cos A) =  - 3\\
 \Leftrightarrow 4\cos A(c{\rm{os}}(B - C) - c{\rm{os}}(B + C)) =  - 3\\
 \Leftrightarrow \cos A\cos B\cos C = \frac{{ - 3}}{8}
\end{array}$
Chú ý biểu diễn véctơ trong lời giải trên vẫn còn hiệu lực khi tam giác $ABC$ không nhọn ./.

Thẻ

Lượt xem

1037

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003