Cho hàm số $y = \frac{x^2 - 3x + 6}{2(x - 1)}$. Tìm các điểm trên đồ thị sao cho tổng các khoảng cách từ đó đến hai trục là nhỏ nhất.
Điểm M(x, y) thuộc đồ thị thì x khác 1 và $y = \frac{1}{2}\left( {x - 2 + \frac{4}{{x - 1}}} \right)$.
Tổng các khoảng cách từ M đến các trục là:
$f\left( x \right) = \left| x \right| + \frac{1}{2}\left| {x - 2 + \frac{4}{{x - 1}}} \right|,x \in \left( { - \infty ,1} \right) \cup \left( {1, + \infty } \right)$
$\left\{ \begin{array}{l}
x + \frac{1}{2}\left( {x - 2 + \frac{4}{{x - 1}}} \right), x \in \left( {{\rm{1, + }}\infty } \right)\\
\left| x \right| - \frac{1}{2}\left( {x - 2 + \frac{4}{{x - 1}}} \right) , x \in \left( { - \infty ,1} \right)
\end{array} \right.$
TH1. Xét f(x) với x > 1
Ta có $f'\left( x \right) = 1 + \frac{1}{2} - \frac{2}{{{{\left( {x - 1} \right)}^2}}}$= $\frac{3}{2} - \frac{2}{{{{\left( {x - 1} \right)}^2}}}$
$f’(x) = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = \frac{4}{3}\Leftrightarrow x =- 1 = \frac{2}{{\sqrt 3 }}, x = 1 + \frac{2}{{\sqrt 3 }}$
f’(x) < 0 khi $x \in \left( {1,1 + \frac{2}{{\sqrt 3 }}} \right)$ và f’(x) > 0 khi $x \in \left( {1 + \frac{2}{{\sqrt 3 }}, + \infty } \right)$
Vậy $\mathop {\min }\limits_{x > 1} f\left( x \right) = 1 + \frac{2}{{\sqrt 3 }} + \frac{1}{2}\left( {1 + \frac{2}{{\sqrt 3 }} - 2 + \frac{4}{{\frac{2}{{\sqrt 3 }}}}} \right)$ khi $x = 1 + \frac{2}{{\sqrt 3 }}$
TH2. Xét f(x) với $0 \leq  x < 1.$
Khi đó
$f\left( x \right) = \frac{x}{2} - \frac{2}{{x - 1}} + 1,f'\left( x \right) = \frac{1}{2} + \frac{2}{{{{\left( {x - 1} \right)}^2}}} > 0$
Vậy $\mathop {\min }\limits_{0 \le x < 1} f\left( x \right) = f\left( 0 \right) = 2$
TH3. Xét f(x) với x < 0.
Khi đó
$f\left( x \right) =  - x - \frac{1}{2}\left[ {\left( {x - 2} \right) + \frac{4}{{x - 1}}} \right]$
$f'\left( x \right) =  - \frac{3}{2} + \frac{2}{{{{\left( {x - 1} \right)}^2}}}$, $f'\left( x \right) = 0$ $\Rightarrow$  $x = 1 - \frac{2}{{\sqrt 3 }}$
f’(x) < 0 khi $x < 1 - \frac{2}{{\sqrt 3 }}$ và f(x) > 0 khi $x > 1 - \frac{2}{{\sqrt 3 }}$.
Vậy $\mathop {\min }\limits_{x < 0} f\left( x \right) =  - \frac{3}{2}\left( {1 - \frac{2}{{\sqrt 3 }}} \right) + 1 - \frac{2}{{ - \frac{2}{{\sqrt 3 }}}} =  - \frac{1}{2} + 2\sqrt 3 $
So sánh ta thấy $\mathop {\min }\limits_{x \ne 1} f\left( x \right) = f\left( 0 \right) = 2$.
Vậy M(0;-3) là điểm cần tìm.

Thẻ

Lượt xem

1075

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003