|
$\begin{array}{l} \left( 1 \right) \Leftrightarrow - {\log _6}\left( {\sin \frac{x}{2} - 3tanx - \frac{{3\sqrt 3 }}{2}} \right) + {\log _6}\left( {\sin \frac{x}{2} - tan2x - \frac{{3\sqrt 3 }}{2}} \right) = 0\\ \,\,\,\ \Leftrightarrow \sin \frac{x}{2} - 3tanx - \frac{{3\sqrt 3 }}{2} = \sin \frac{x}{2} - tan2x - \frac{{3\sqrt 3 }}{2} > 0\\ \,\,\,\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l} \sin \frac{x}{2} - 3tanx - \frac{{3\sqrt 3 }}{2} > 0 & \left( 2 \right)\\ 3tanx = tan2x & & \left( 3 \right) \end{array} \right. \end{array}$ Với $t = \tan x$, $\left( 3 \right) \Leftrightarrow 3t = \frac{{2t}}{{1 - {t^2}}}$. $\Leftrightarrow (3t^2-1)=0\Leftrightarrow \left[ \begin{array}{l}t=0\\t=\pm \frac{1}{\sqrt{3}}\end{array} \right.\Leftrightarrow \left[ \begin{array}{l}x = k\pi (không thỏa mãn) (4)\\x=\pm \frac{\pi}{6}+k\pi\end{array} \right.$ $t=\frac{1}{\sqrt{3}}$ không thỏa mãn điều kiện $(2)$ $t=\frac{-1}{\sqrt{3}}\Leftrightarrow x=\frac{-\pi}{6}+k\pi$ Xét điều kiện $(2)$ : $\begin{array}{l} \,\sin \left( { - \frac{\pi }{{12}} + \frac{{k\pi }}{2}} \right) + \frac{{3\sqrt 3 }}{3} - \frac{{3\sqrt
3 }}{2} > 0\\ \,\,\,\,\,\,\,\, \Leftrightarrow \sin \left( { - \frac{\pi }{{12}} + \frac{{k\pi }}{2}} \right) >
\frac{{\sqrt 3 }}{2} \end{array}$ Suy ra : $k = 4h + 1$, khi đó $x=\frac{5\pi}{6}+4h\pi$ $(h\in Z)$
Phương trình có nghiệm duy nhất:
$x=\frac{5\pi}{6}+4h\pi$ $(h\in Z)$
|