Trong mặt phẳng $\alpha$ cho góc vuông $xOy,d$ là đường thẳng cố định trong $\alpha,d$ cắt $Ox,Oy$ lần lượt tại $A,B$.Gọi $Oz$ là tia vuông góc với $\alpha,S$ là một điểm trên $Oz$.Gọi $AE,BF$ là đường cao của $\Delta SAB$ $a.$ Cho góc $xOy$ cố định,$S$ di động trên tia $Oz$.Tìm tập hợp các điểm $E,F$ $b.$ Cho $d$ cố định, góc $xOy$ xoay quanh $O$.Chứng minh rằng trực tâm của $\Delta SAB$ cố định.Tìm tập hợp các điểm $E,F$
|