Cho hình vuông $ABCD$ cạnh bằng $a$.Trên đường thẳng vuông góc với mặt phẳng $(ABCD)$ tại $A$ lấy điểm $S$ sao cho $SA=a\sqrt{2} $.Gọi $\alpha$ là mặt phẳng qua $A$ và vuông góc với $SC,\alpha$ cắt $SB,SC,SD$ lần lượt tại $M,N,P$
$a.$ Chứng minh rằng $AM\bot SB,AP\bot SD$ và $SM.SB=SN.SC=SP.SD=SA^2$
$b.$ Chứng minh rằng tứ giác $AMNP$ nội tiếp được và có hai đường chéo vuông góc với nhau
$c.$ Gọi $O$ là giao điểm của $AC,BD;K$ là giao điểm của $AN,MP$.Chứng minh rằng ba điểm $S,K,O$ thẳng hàng
$d.$ Tính diện tích tứ giác $AMNP$

Dựng thiết diện :
- Trong $(SAC)$ dựng  $AN\bot SC$
- Trong $(SBC)$ dựng $Nx\bot SC$ và cắt $SB$ tại $M$
- Trong $(SCD)$ dựng $Ny\bot SC$ và cắt $SD$ tại $P$
Thấy ngay $A,M,N,P$ đồng phẳng vì cùng thuộc mặt phẳng qua $N$ (hoặc $a$) và vuông góc với $SC$
$a.$ Ta có :
$\begin{cases}BC\bot AB\\BC\bot SA \end{cases} \Rightarrow  BC\bot (SAB)\Rightarrow  BC\bot AM     (1)$
Mặt khác theo cách dựng ta có :
$SC\bot (AMNP)\Rightarrow  SC\bot AM    (2)$
Từ $(1),(2)$ suy ra
$AM\bot (SBC)\Rightarrow  AM\bot SB$
Chứng minh tương tự ta được $AP\bot SD$
Các $\Delta SAB,\Delta SAC,\Delta SAD$ cùng vuông tại $A$ và lần lượt có các đường cao $AM,AN,AP$ suy ra :
$SA^2=Sm.SB=SN.SC=SP.SD       (3)$
$b.$ TA có :
$\begin{cases} AM\bot (SBC)\\AP\bot (SCD)\end{cases} \Rightarrow  \begin{cases}AM\bot MN\\AP\bot PN \end{cases} \Leftrightarrow  \begin{cases}\widehat{AMN}=90^0\\\widehat{APN}=90^0   \end{cases} $
$\Rightarrow  AMNP$ nội tiếp đường tròn đường kính $AN$
Nhận xét rằng :
$\begin{cases}BD\bot AC\\BD\bot SA \end{cases} \Rightarrow  BD\bot (SAC)\Rightarrow  BD\bot AN$
Dễ thấy $SB=SB$ do đó từ $(3)$ :
$SM.SB=SP.SD\Leftrightarrow  SM.SD=SP.SB\Leftrightarrow  \frac{SM}{SB} =\frac{SP}{SD} $
$\Rightarrow  MP//BD\Rightarrow  MP\bot AN$
VẬy tứ giác $AMNP$ nội tiếp được và có hai đường chéo vuông góc với nhau.
$c,$ Ta có :
$\begin{cases}S.K,O \in (SAC)\\\S,K,O\in )(SBD) \end{cases} \Rightarrow  $ ba điểm $S,K,O$ thẳng hàng
$d.$ Ta có :
$S_{AMNP}=\frac{1}{2} AN.MP        (4)$
trong đó :
Trong $\Delta SAC$ vuông tại $A$, ta được :
$\frac{1}{AN^2}=\frac{1}{SA^2}+\frac{1}{AC^2}   =\frac{1}{2a^2}+\frac{1}{2a^2}  \Rightarrow  AN=a   (5)$
Trong $\Delta SBD$ ta được  :
$\frac{MP}{BD} =\frac{SM}{SB}=\frac{SM.SB}{SB^2}=\frac{SA^2}{SA^2+AB^2}=\frac{2}{3} \Rightarrow  MP=\frac{2a\sqrt{2} }{3}       (6)$
Thay $(5),(6)$ vào $(4) $ ta được :
$S_{AHIK}=\frac{1}{2} a.\frac{2a\sqrt{2} }{3} =\frac{a^2\sqrt{2} }{4} $
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003