Cho tứ diện $OABC$ có các cạnh $OA, OB, OC$ đôi một vuông góc với nhau. $H$ là hình chiếu của $O$ trên  $(ABC)$
a) Chứng minh $\Delta ABC$ có ba góc nhọn
b) Chứng minh $H$ là trực tâm $\Delta ABC$
c) Chứng minh $\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}+\frac{1}{OC^2}  $
d) Gọi $\alpha =[O,AB,C], \beta =[O,BC,A], \gamma=[O,AC,B]$.
Chứng minh $cos^2\alpha +cos^2 \beta +cos ^2\gamma=1$

Chọn hệ trục tọa độ $Oxyz$ sao cho: $O(0;0;0), A(a;0;0), B(0;b;0), C(0;0;c)(a,b,c>0)$

a) Ta có: $\overrightarrow{AB}.\overrightarrow{AC}=(-a;b;0)(-a;0;c)=a^2>0 \Rightarrow  \widehat{BAC} $ nhọn.
Tương tự: $\widehat{ABC},\widehat{ACB}$ nhọn
Vậy $\Delta ABC$ có ba góc nhọn

b) Ta có phương trình $mp(ABC): \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1   \Leftrightarrow  bcx+acy+abz-abc=0$
$OH\bot (ABC)\Leftrightarrow  \overrightarrow{u}_{OH}=\overrightarrow{n}_{(ABC)}  =(bc;ac;ab)$
Phương trình tham số $OH:\left\{ \begin{array}{l} x=bct\\ y=act\\z=abt \end{array} \right. (t\in R)$
Thay $x,y,z$ vào phương trình $(ABC):(b^2c^2+a^2c^2+a^2b^2)t=abc$
$t=\frac{abc}{a^2b^2+b^2c^2+C62a^2} $
$\begin{array}{l}
 \Rightarrow H\left( {\frac{{a{b^2}{c^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}};\frac{{{a^2}b{c^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}};\frac{{{a^2}{b^2}c}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}}} \right)\\
 \Rightarrow \left\{ \begin{array}{l}
\overrightarrow {AH}  = \frac{{{a^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}}( - a{b^2} - a{c^2};b{c^2};{b^2}c)\\
\overrightarrow {BH}  = \frac{{{b^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}}(a{c^2}; - {a^2}b - b{c^2};{a^2}c)
\end{array} \right.\\
 \Rightarrow \left\{ \begin{array}{l}
\overrightarrow {AH} .\overrightarrow {BC}  = \frac{{{a^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}}( - a{b^2} - a{c^2};b{c^2};{b^2}c)(0; - b;c) = 0\\
\overrightarrow {BH} .\overrightarrow {AC}  = \frac{{{b^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}}(a{c^2}; - {a^2}b - b{c^2};{a^2}c)( - a;0;c) = 0
\end{array} \right.\\
 \Rightarrow \left\{ \begin{array}{l}
AH \bot BC\\
BH \bot AC
\end{array} \right.
\end{array}$
$\Rightarrow  H$ là trực tâm của $\Delta ABC$

c) Ta có:
$\begin{array}{l}
OH = d(O,(ABC)) = \frac{{| - abc|}}{{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }} \Rightarrow \frac{1}{{O{H^2}}} = \frac{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}}{{{a^2}{b^2}{c^2}}}\\
\frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}}{{{a^2}{b^2}{c^2}}}\\
 \Rightarrow \frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}
\end{array}$

d) Nhận xét: $|cos\alpha |=|cos[\widehat{(OAB),(ABC)}]|=|cos(\overrightarrow{n}_{(OAB)},\overrightarrow{n}_{(ABC)}  )|$
Gọi $\overrightarrow{n}=\overrightarrow{n}_{(ABC)}=(bc;ac;ab)  $
$\overrightarrow{n}_1 =\overrightarrow{n}_{(OAB)}=\overrightarrow{k} =(0;0;1) $
$\overrightarrow{n}_2=\overrightarrow{n}_{(OBC)}=\overrightarrow{i}=(1;0;0)   $
$\overrightarrow{n}_3 =\overrightarrow{n}_{(OAC)}=\overrightarrow{j}=(0;1;0)  $
$\begin{array}{l}
 \Rightarrow c{\rm{o}}{{\rm{s}}^2}\alpha  + c{\rm{o}}{{\rm{s}}^2}\beta  + c{\rm{o}}{{\rm{s}}^2}\gamma  = c{\rm{o}}{{\rm{s}}^2}(\overrightarrow {{n_1}} ,\overrightarrow n ) + c{\rm{o}}{{\rm{s}}^2}(\overrightarrow {{n_2}} ,\overrightarrow n ) + c{\rm{o}}{{\rm{s}}^2}(\overrightarrow {{n_3}} ,\overrightarrow n )\\
 = \frac{{{a^2}{b^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}} + \frac{{{b^2}{c^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}} + \frac{{{c^2}{a^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}}}\\
 \Rightarrow c{\rm{o}}{{\rm{s}}^2}\alpha  + c{\rm{o}}{{\rm{s}}^2}\beta  + c{\rm{o}}{{\rm{s}}^2}\gamma  = 1
\end{array}$
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003