Giải các phương trình:
a/ $ \sqrt{ \log_{2}{\left(2x^{2}\right)} . \log_{4}{\left(16x\right)}}=\log_{4}{x^{3}}$
b/ $ \log_{0,5}{x^{2}}-14\log_{16x}{x^{3}}+40\log_{4x}{\sqrt{ x}}=0$
c/ $ \left(x+2\right).\log_{3}^{2}{\left(x+1\right) } +4 \left(x+1\right) \log_{3}{\left(x+1\right) }-16=0$
d/ $ \lg \left(3^{x}-2^{4-x}\right) =2+\frac{1}{4}. \lg16 -\frac{x}{2}. \lg 4$
a/ $ \sqrt{ \log_{2}{\left(2x^{2}\right)} . \log_{4}{\left(16x\right)}}=\log_{4}{x^{3}}$
$ \Leftrightarrow \sqrt{ \left(1+2\log_{2}{x}\right) .\frac{1}{2} \left(4+\log_{2}{x}\right) }=\frac{3}{2}. \log_{2}{x}(*)$
điều kiện $\begin{cases}x>0 \\  \left(1+2\log_{2}{x}\right) .\frac{1}{2} \left(4+\log_{2}{x}\right) \geq 0 \end{cases}  \Leftrightarrow \begin{cases}x>0 \\ \log_{2}{x} \leq -4 ; \log_{2}{x}\geq \frac{-1}{2} \end{cases} $
với điều kiện
$(*) \Leftrightarrow \frac{1}{2}.\left(1+2\log_{2}{x}\right) .\frac{1}{2} \left(4+\log_{2}{x}\right)=\frac{9}{4}.\log_{2}^{2}{x}$

$\Leftrightarrow 2 \left(2\log_{2}^{2}{x}+9\log_{2}{x}+4 \right)=9 \log_{2}^{2}{x}$

đặt $\log_{2}{x}=t  $
được phương trình
$ 5t^{2}-18t-8=0 \Leftrightarrow \left[ \begin{array}{l}t=\frac{-2}{5}\\t=4\end{array} \right. $

$\Rightarrow t=\frac{-2}{5} \Rightarrow \log_{2}{x}=\frac{-2}{5} \Leftrightarrow x=2^{\frac{-2}{5}}=\frac{1}{\sqrt[5]{4}} $

$ t=4 \Rightarrow \log_{2}{x}=4 \Leftrightarrow x=2^{4}=16$
hai nghiệm $x=\frac{1}{\sqrt[5]{4}}, x=16 $  thỏa các điều kiện.

b/ $ \log_{0,5x}{x^{2}}-14\log_{16x}{x^{3}}+40\log_{4x}{\sqrt{ x}}=0$
điều kiện: $x >0, x\neq 2; x \neq \frac{1}{16}, x\neq \frac{1}{4}, x\neq 1$

với các điều kiện trên, biến đổi  $(*)$

$ \Leftrightarrow 2 \log_{\frac{1}{2}x}{x}-42\log_{16x}{x}+20\log_{4x}{x}=0 $

$ \Leftrightarrow \frac{2}{\log_{x}{\frac{x}{2}}}-\frac{42}{\log_{x}{16x}}+\frac{20}{\log_{x}{4x}} =0$

$ \Leftrightarrow \frac{1}{1- \log_{x}{2}}-\frac{21}{1+4\log_{x}{2}}+\frac{10}{1+2\log_{x}{2}}=0$
đặt $\log_{x}{2}=t, $ được phương trình
$\frac{1}{1-t}-\frac{21}{1+4t}+\frac{10}{1+2t}=0$
$\Leftrightarrow \left(x\right) \left(x\right) -21 \left(x\right) \left(x\right) +10 \left(x\right) \left(x\right) =0$
$\Leftrightarrow 8t^{2}+6t+1+42t^{2}-21t-21-40t^{2}+30t+10=0 \Leftrightarrow 10t^{2}+15t-10=0 $
$ \Leftrightarrow 2t^{2}+3t-2=0 \Leftrightarrow t=-2; t=\frac{1}{2}$
$ \Rightarrow \left[ \begin{array}{l}\log_{x}{2}= -2 \Leftrightarrow x=\frac{1}{ \sqrt{ 2}}\\\log_{x}{2} = \frac{1}{2} \Leftrightarrow x=4 \end{array} \right. $


c/ $ \left(x+2\right).\log_{3}^{2}{\left(x+1\right) } +4 \left(x+1\right) \log_{3}{\left(x+1\right) }-16=0$
điều kiện: $x>-1$
coi vế trái là tam thức bậc hai của $ \log_{3}{\left(x+1\right)}$, với $a= x+2, b= 4 \left(x+1\right) , c=-16$
$\Delta'= 4 \left(x+1\right) ^{2}+16\left(x+2\right)=4 \left(x+1\right) ^{3} \Rightarrow \sqrt{ Delta'}=2x+6$
$ \Rightarrow \left[ \begin{array}{l}\log_{3}{\left(x+1\right)}=\frac{-2x-2+2x+6}{x+2}=\frac{-4x-8}{x+2}=-4(1)\\\log_{3}{\left(x+1\right)}=\frac{-2x-2+2x+6}{x+2}=\frac{4}{x+2}(2)\end{array} \right. $
$(1)$ cho$ x+1=3^{-4}=\frac{1}{81} \leftrightarrow x=\frac{-80}{81}$
 $(2)$ cho $ x=2 $ là nghiệm duy nhất, vì vế trái đồng biến, vế phải nghịc biến.

d/ $ \lg \left(3^{x}-2^{4-x}\right) =2+\frac{1}{4}. \lg16 -\frac{x}{2}. \lg 4$
$ \Leftrightarrow \lg \left(3^{x}-2^{4-x}\right) =2+\lg2-x \lg2 = \lg \frac{200}{2^{x}}$
$ \Leftrightarrow 3^{x}-2^{4-x}=\frac{200}{2^{x}} \Leftrightarrow 6^{x}-16=200 \Leftrightarrow 6^{x}=216 \Leftrightarrow x=3$

Thẻ

Lượt xem

799

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003