giải các phương trình sau:
a/ $\sqrt{x^{2}+x+4}+\sqrt{x^{2}+x+1}=\sqrt{2x^{2}+2x+9}$
b/ $x^{3}+1=2\sqrt[3]{2x-1}$
c/ $\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}=\frac{3}{2}\sqrt{\frac{x}{x+\sqrt{x}}}$
d/ $\sqrt[3]{x+34}=\sqrt[3]{x-3}=1$
e/ $\sqrt[4]{97-x}+\sqrt[3]{x-15}=4$
f/ $\sqrt{1-x^{2}}=\left(\frac{2}{3}-\sqrt{x}\right)^{2}$
g/ $\sqrt[n]{\left(x+1\right)^{2}}+\sqrt[n]{\left(x-1\right)^{2}}=4\sqrt[n]{x^{2}-1}$
a/ $\sqrt{x^{2}+x+4}+\sqrt{x^{2}+x+1}=\sqrt{2x^{2}+2x+9}$
đặt : $ x^{2}+x+1=t (t>0)$ ta được:
$\sqrt{t+2}+\sqrt{t}=\sqrt{2t+7}$
$\Leftrightarrow t+3+t+2+2\sqrt{t^{2}+3t}=2t+7$
$\Leftrightarrow 2\sqrt{t^{2}+3t}=4 \Leftrightarrow \sqrt{t^{2}+3t}=2 \Leftrightarrow t^{2}+3t=4\Leftrightarrow  t^{2}+3t-4=0$
$\Leftrightarrow \left[ \begin{array}{l}t=1 \\t=-4\end{array} \right.$ loại $t=-4$
$t=1 \Leftrightarrow x^{2}+x+1=1\Leftrightarrow x^{2}+x=0\Leftrightarrow x=0, x=-1$

b/ $x^{3}+1=2\sqrt[3]{2x-1}$
đặt $\sqrt[3]{2x-1}=t\Leftrightarrow  t^{3}=2x-1\Leftrightarrow x^{3}=2t-1$
$\Leftrightarrow t^{3}-x^{3}=2\left(x-t\right)\Leftrightarrow \left(t-x\right)\left(t^{2}+x^{2}+tx+2\right)=0\Leftrightarrow \left[ \begin{array}{l}x = t(1)\\t^{2}+x^{2}+tx+2=0(2)\end{array} \right.$
với $t=x: \sqrt[3]{2x-1}=x\Leftrightarrow x^{3}-2x+1=0\Leftrightarrow \left(x^{3}-1\right)-2\left(x-1\right)=0$
$\Leftrightarrow \left(x-1\right)\left(x^{2}-x+1\right)=0\Leftrightarrow \left[ \begin{array}{l}x =1\\ x=\frac{-1-\sqrt{5}}{2}\\x = \frac{-1+\sqrt{5}}{2}\end{array} \right.$
từ $(2): \left(t^{2}+tx+\frac{x^{2}}{4}\right)+\frac{3x^{2}}{4}+2=\left(t+\frac{x}{2}\right)^{2}+\frac{3x^{2}}{4}+2>0, \forall t, x (2)$ vô nghiệm.

c/ $\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}=\frac{3}{2}\sqrt{\frac{x}{x+\sqrt{x}}}$
điều kiện: $\begin{cases}x\geq 0 \\ x-\sqrt{x}\geq 0 \end{cases}\Leftrightarrow \begin{cases}x\geq 0 \\ x\leq 0, x\geq 1 \end{cases}\Leftrightarrow x\geq 1$
với $x\geq 1(*)\Leftrightarrow x+\sqrt{x}-\sqrt{x^{2}-x}=\frac{3}{2}\sqrt{x}$
$\Leftrightarrow x-\frac{\sqrt{x}}{2}-\sqrt{x}\left(\sqrt{x-1}\right)=0$
$\Leftrightarrow \sqrt{x}\left(\sqrt{x}-\frac{1}{2}-\sqrt{x-1}\right)=0$
$\Leftrightarrow \sqrt{x}-\frac{1}{2}=\sqrt{x-1}\Leftrightarrow x+\frac{1}{4}-\sqrt{x}=x-1$
$\Leftrightarrow \sqrt{x}=\frac{5}{4}\Leftrightarrow x=\frac{25}{16}$

d/ $\sqrt[3]{x+34}=\sqrt[3]{x-3}=1$
đặt $\begin{cases}\sqrt[3]{x+34}=u \\ \sqrt[3]{x-3}=v \end{cases}\Rightarrow \begin{cases}x+34=u^{3} \\ x-3=v^{3} \end{cases}\Rightarrow u^{3}-v^{3}=37$
$\Leftrightarrow \left(u-v\right)\left(u^{2}+v^{2}+uv\right)=37$
$\Leftrightarrow \left(u-v\right)[ \left(y-v\right)^{2}+3uv] =37$
$\Leftrightarrow [ 1^{2}+3uv]=37 \Leftrightarrow 3uv=36 \Leftrightarrow uv=12$
$\Rightarrow \begin{cases}u-v=1 \\ u\left(-v\right)=-12 \end{cases}$: u,-v lần lượt là nghiệm của phương trình:
$X^{2}-X-12=0\Leftrightarrow \begin{cases}X= 4\\ X= -3\end{cases} \Rightarrow \begin{cases}u=4 \\ v=3 \end{cases}\Rightarrow \begin{cases}x+34=4^{3} \\ x-3=3^{3} \end{cases}\Rightarrow x=30$

e/ $\sqrt[4]{97-x}+\sqrt[3]{x-15}=4$
điều kiện: $15\leq x \leq 97$
đặt: $\begin{cases}u=\sqrt[4]{97-x} \\ v=\sqrt[4]{x-15} \end{cases}\Leftrightarrow \begin{cases}u^{4}=97-x= \\ v^{4}=x-15 \end{cases}\Leftrightarrow \begin{cases}u+v=4 \\ u^{4}+v^{4}=82 \end{cases}$
$u^{4}+v^{4}=\left(u^{2}+v^{2}\right)^{2}-2u^{2}v^{2}=[\left(u+v\right)^{2}-2uv]^{2}-2u^{2}v^{2}=82$
$\Leftrightarrow \left(16-2uv\right)^{2}-2u^{2}v^{2}=82$
$\Leftrightarrow 256-64uv+4u^{2}v^{2}-2u^{2}v^{2}=82$
$\Leftrightarrow 2u^{2}v^{2}-64uv+174=0\Leftrightarrow u^{2}v^{2}-32uv+87=0$
$\Leftrightarrow \left[ \begin{array}{l}uv=3\\uv=29\end{array} \right.$
$\begin{cases}u+v=4\\ uv=3 \end{cases}\Leftrightarrow \begin{cases}u=1 \\ v=3 \end{cases}$ hay $\begin{cases}1=97-x \\ 81= x-15\end{cases}\Leftrightarrow x=98$ hay $\begin{cases}81= 97-x\\ 1=x-15 \end{cases}\Leftrightarrow x=16$
$ \begin{cases}u+v=4 \\ uv=29 \end{cases} $: u, v theo thứ tự là nghiệm của phương trình
$ X^{2} -4X+29=0 $ vô nghiệm

f/ $\sqrt{1-x^{2}}=\left(\frac{2}{3}-\sqrt{x}\right)^{2}$
đặt $ \begin{cases}\sqrt{x}=y \\ \frac{2}{3}-\sqrt{x}=z \end{cases} \Rightarrow \begin{cases}y^{4}=x^{2} \\ z^{4}=1-x^{2} \\ y+z=\frac{2}{3} \end{cases} \Leftrightarrow \begin{cases}y^{4}+z^{4}=1 \\ y+z=\frac{2}{3} \end{cases} $
được phương trình $y^{4}+ \left(\frac{2}{3}-y\right) ^{4}=1 \Leftrightarrow y^{4}+ \left(y-\frac{2}{3}\right) ^{4}=1$
lại đặt $t=y-\frac{1}{3} \Rightarrow \left(t+\frac{1}{3}\right) ^{4}+ \left(t-\frac{1}{3}\right) ^{4}=1$
$ \Rightarrow t^{4}+4.t^{3}.\frac{1}{3}+6.t^{2}.\frac{1}{9}+4.t.\frac{1}{27}+\frac{1}{81}+t^{4}-4t{3}.\frac{1}{3}+6t^{2}.\frac{1}{9}-4t\frac{1}{27}+\frac{1}{81}=1$
$ \Rightarrow 2t^{4}+\frac{12}{9}.t^{2}-\frac{79}{81}=0 \Leftrightarrow 2t^{4}+\frac{4}{3}.t^{2}-\frac{79}{81}=0$
$ \Rightarrow \Delta' \frac{4}{9}+\frac{158}{81}=\frac{194}{81}$
$\Rightarrow t^{2}=\frac{\frac{-2}{3}+\frac{\sqrt{194}}{9}}{2} =\frac{-1}{3}+\frac{\sqrt{194}}{18}=\frac{\sqrt{ 194}-6}{18}$
$ \Rightarrow t= \pm \frac{ \sqrt{ 2 \sqrt{ 194}-12}}{6} \Rightarrow y= \sqrt{ x}  \pm  \frac{ \sqrt{ 2 \sqrt{ 194}-12}}{6}+\frac{1}{3} $
$ \Rightarrow x= \left(\pm \frac{ \sqrt{ 2 \sqrt{ 194}-12}}{6} +\frac{1}{3} \right) ^{2}=\frac{ \sqrt{ 194}}{18}-\frac{2}{9} \pm \frac{ \sqrt{ 2 \sqrt{ 194}-12}}{9}$

g/ $\sqrt[n]{\left(x+1\right)^{2}}+\sqrt[n]{\left(x-1\right)^{2}}=4\sqrt[n]{x^{2}-1}$
nếu  $n=2k$ thì điều kiện $|x|>1$
với $|x|>1, (*) \Leftrightarrow \sqrt[n]{\frac{ \left(x+1\right) ^{2}}{x^{2}-1}}+\sqrt[n]{ \frac{\left(x-1\right) ^{2}}{x^{2}-1}}=4$
$\sqrt[n]{\frac{x+1}{x-1}}+\sqrt[n]{\frac{x-1}{x+1}}=4$
đặt $\sqrt[n]{\frac{x+1}{x-1}}=t $ được phương trình $t +\frac{1}{t}=4$
$ \Rightarrow t^{2}-4t+1=0 \Leftrightarrow \left[ \begin{array}{l}t = 2-\sqrt{3}\\t = 2+\sqrt{ 3}\end{array} \right. $
nếu $t= 2- \sqrt{ 3} \Rightarrow \frac{x+1}{x-1}=\left( 2- \sqrt{ 3}\right)^{n} \Rightarrow x=\frac{ \left(2- \sqrt{ 3}\right) ^{n}+1}{ \left(2- \sqrt{ 3}\right) ^{n}-1}$
nếu $ t= 2+ \sqrt{ 3} \Rightarrow \frac{x+1}{x-a}=\left( 2+ \sqrt{ 3} \right)^{n} \Rightarrow x=\frac{ \left(2+ \sqrt{ 3}\right) ^{n}+1}{ \left(2+ \sqrt{ 3}\right) ^{n}-1}$

Thẻ

Lượt xem

665

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003