$a)$ Chứng minh rằng:
  $1/ tan5^0.tan55^0 tan65^0 = 2 - \sqrt 3 $
  $2/ cos^2x + cos^2 \left( {\frac{{\pi }}{{3}}{ - x}} \right){ - 
cosx}{.cos}\left( {\frac{{\pi }}{{3}}{ - x}} \right){ = 
}\frac{{3}}{{4}}$
$b)$ Giải hệ phương trình: $\left\{ \begin{array}{l}
{sinx}{.siny = }\frac{{1}}{{4}}\\
{3tanx = coty}
\end{array} \right.$
$a) 1/ tan5^0.tan55^0 tan65^0 = 2 - \sqrt 3 $
$VT = tan5^0.tan55^0 tan65^0 = tan5^0.tan(60^0 + 5^0)tan(60^0 + 5^0)$
       $\begin{array}{l}
{ = tan}{{5}^{0}}\frac{{{tan6}{{0}^{0}}{ -
tan}{{5}^{0}}}}{{{1 +
tan6}{{0}^{0}}{.tan}{{5}^{0}}}}{.}\frac{{{tan6}{{0}^{0}}{ + tan}{{5}^{0}}}}{{{1 -
tan6}{{0}^{0}}{.tan}{{5}^{0}}}}\\
{ = tan}{{5}^{0}}\frac{{\sqrt {3} { -
tan}{{5}^{0}}}}{{{1 + }\sqrt {3}
{tan}{{5}^{0}}}}{.}\frac{{\sqrt {3} { +
tan}{{5}^{0}}}}{{{1 - }\sqrt {3} {tan}{{5}^{0}}}}\\
{ = }\frac{{{tan}{{5}^{0}}{(3 -
t}{{an}^{2}}{{5}^{0}}{)}}}{{{1 -
3t}{{an}^{2}}{{5}^{0}}}}{ =
}\frac{{{3tan}{{5}^{0}}{ -
t}{{an}^{3}}{{5}^{0}}}}{{{1 -
3t}{{an}^{2}}{{5}^{0}}}}{ =
tan(3}{.}{{5}^{0}}{) = tan1}{{5}^{0}}\\
\left( {{tan3\alpha  = }\frac{{{3tan\alpha  - t}{{an}^{3}}{\alpha
}}}{{{1 - 3t}{{an}^{2}}{\alpha }}}} \right)\\
{ = tan(6}{{0}^{0}}{ - 45}{}^0{) =
}\frac{{{tan6}{{0}^{0}}{ - tan45}{}^0}}{{{1 +
tan6}{{0}^{0}}{.tan45}{}^0}}
\end{array}$
       = $\frac{{\sqrt {3} { - 1}}}{{{1 + }\sqrt {3} }}{ =
}\frac{{{{\left( {\sqrt {3} { - 1}} \right)}^{2}}}}{{{3 - 1}}}{ =
}\frac{{{4 - 2}\sqrt {3} }}{{2}}{ = 2 - }\sqrt {3} { = VP}$ 
   (đpcm)
$2/VT = cos^2x + cos^2 (\left( {\frac{{\pi }}{{3}}{ - x}} \right){ -
cosx}{.cos}\left( {\frac{{\pi }}{{3}}{ - x}} \right)$
         $\begin{array}{l}
{ = }{\left[ {{2sin}\frac{{\pi }}{{6}}{sin}\left( {\frac{{\pi
}}{{6}}{ - x}} \right)} \right]^{2}}{ +
}\frac{{1}}{{2}}\left[ {{cos}\frac{{\pi }}{{3}}{ + cos}\left(
{\frac{{\pi }}{{3}}{ - 2x}} \right)} \right]\\
{ = 2}{.}\frac{{1}}{{2}}{si}{{n}^2}\left( {\frac{{\pi
}}{{6}}{ - x}} \right){ +
}\frac{{1}}{{2}}{.}\frac{{1}}{{2}}{ +
}\frac{{1}}{{2}}\left[ {{1 - 2si}{{n}^2}\left( {\frac{{\pi
}}{{6}}{ - x}} \right)} \right]
\end{array}$
         ${ = }\frac{{1}}{{4}}{ +
}\frac{{1}}{{2}}{ = }\frac{{3}}{{4}}{ = VP}$  (đpcm)
$b$) Ta có: $3tanx=coty$
Điều kiện: $x \neq \frac{{\pi }}{{2}}{ + k2\pi , y \neq }{{k}^{,}}{\pi ,k,  }{{k}^{,}} \in {Z}$
$ \Leftrightarrow \frac{{{sinx}}}{{{cosx}}}{ =
}\frac{{{cosy}}}{{{siny}}} \Leftrightarrow {3sinx}{.siny =
cosx}{.cosy}$
$ \Leftrightarrow {cosx}{.cosy = }\frac{{3}}{{4}}$ (vì $sinx.siny =\frac{1}{4}$)
Hệ: $ \Leftrightarrow \left\{ \begin{array}{l}
{sinx}{.siny = }\frac{{1}}{{4}}\\
{cosx}{.cosy = }\frac{{3}}{{4}}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{cosx}{.cosy + sinx}{.siny = 1}\\
{cosx}{.cosy - sinx}{.siny = }\frac{{1}}{{2}}
\end{array} \right.$
        $\begin{array}{l}
\\
 \Leftrightarrow \left\{ \begin{array}{l}
{cos(x - y) = 1}\\
{cos(x + y) = }\frac{{1}}{{2}}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x - y = k2\pi }\\
{x + y =  \pm }\frac{{\pi }}{{3}}{ + l2\pi }
\end{array} \right.{    (k, l} \in {Z)}\\
 \Leftrightarrow \left\{ \begin{array}{l}
{x = }\frac{{\pi }}{{6}}{ + (k +  l)\pi }\\
{y = }\frac{{\pi }}{{6}}{ + ( l - k)\pi }
\end{array} \right.{  } \vee { }\left\{ \begin{array}{l}
{x =  - }\frac{{\pi }}{{6}}{ + (l + k)\pi }\\
{y =  - }\frac{{\pi }}{{6}}{ + (l - k)\pi }
\end{array} \right.
\end{array}$

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003