Giải các phương trình logarit:
$a) log^2x – 3logx = log(x^2) – 4$
$b) lo{g_{\frac{1}{3}}}x - 3\sqrt {lo{g_{\frac{1}{3}}}x}  + 2 = 0$
$c) lo{g_{\frac{1}{2}}}^2(4x) + lo{g_2}\frac{{{x^2}}}{8} = 8$
$d) lo{g_{\sqrt 5 }}({4^x} - 6) - lo{g_5}{({2^x} - 2)^2} = 2$


$a) lg^2 x – 3lgx = lg(x^2) – 4   (*)$
Điều kiện: $x > 0$
$(*)  \Leftrightarrow  lg^2 x – 3lgx – 2lgx + 4 = 0 \Leftrightarrow lg^2 x – 5lgx + 4 = 0$
 Đặt: $u = lgx  \Leftrightarrow u^2 – 5u + 4 $ $ \Leftrightarrow $$\left[ \begin{array}{l}
{u_1} = 1\\
{u_2} = 4
\end{array} \right.$
•  $ u= 1  \Leftrightarrow lgx = 1 = lg10  \Leftrightarrow x = 10$
•   $ u =4  \Leftrightarrow lgx = 4 = lg10^4 \Leftrightarrow x= 10^4$
$b)$ $lo{g_{\frac{1}{3}}}x - 3\sqrt {lo{g_{\frac{1}{3}}}x}  + 2 = 0$
Điều kiện: $\left\{ \begin{array}{l}
x > 0\\
lo{g_{\frac{1}{3}}}x \ge 0 \Leftrightarrow 0 < x \le 1
\end{array} \right.$
Đặt: $u = \sqrt {{{\log }_{\frac{1}{3}}}x} $ = 1 $ \ge $0
($*$)$ \Leftrightarrow  u^2 – 3u + 2 = 0$
$u_1 =  1, u_2 = 2$
•    $u = \sqrt {{{\log }_{\frac{1}{3}}}x} $$ \Leftrightarrow $${\log _{\frac{1}{3}}}x$=1$
\Leftrightarrow $x = $\frac{1}{3}$      (nhận)
•    $u = 2 =\sqrt {{{\log }_{\frac{1}{3}}}x} $$ \Leftrightarrow $${\log
_{\frac{1}{3}}}x$=4$ \Leftrightarrow $x = ${\left( {\frac{1}{3}} \right)^4} = \frac{1}{{81}}$   (nhận)
$c$) $lo{g_{\frac{1}{2}}}^2(4x) + lo{g_2}\frac{{{x^2}}}{8} = 8$                 Điều kiện: $x > 0$
$ \Leftrightarrow $$lo{g_{\frac{1}{2}}}^2(4x) + log\frac{{{{\left( {4x} \right)}^2}}}{{8.16}} = 8$
$ \Leftrightarrow $${\left[ { - lo{g_2}(4x)} \right]^2} + log\frac{{{{\left( {4x}
\right)}^2}}}{{28.16}} = 8$
$ \Leftrightarrow $$lo{g_2}^2(4x) + 2lo{g_2}4x = 8 + lo{g_2}({2^6}.2) = 15     (*)     $
Đặt $u = log_2(4x) $
$(*) \Leftrightarrow u^2 + 2u – 15 = 0$ 
$\Leftrightarrow  \left[ \begin{array}{l}
u = 3\\
u =  - 5
\end{array} \right.$
•    $u = 3 \Leftrightarrow  log_2(4x) = 3  \Leftrightarrow 4x = 2^3  \Leftrightarrow x = 2$
•    $u= -5  \Leftrightarrow log_2(4x) = -5 = log_22^-5 \Leftrightarrow 4x = 2^{-5} \Leftrightarrow  x =2^{-7} = \frac{1}{{128}}$
$d$) $lo{g_{\sqrt 5 }}({4^x} - 6) - lo{g_5}{({2^x} - 2)^2} = 2  (*)$
Điều kiện: $\left\{ \begin{array}{l}
{4^x} - 6 > 0\\
{2^x} - 2 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{2^{2x}} - 6 > 0\\
x > 1
\end{array} \right.$
$(*)$ $ \Leftrightarrow $$lo{g_5}{({4^x} - 6)^2} - lo{g_5}{({2^x} - 2)^2} = 2$$ \Leftrightarrow
lo{g_5}{\left( {\frac{{{4^x} - 6}}{{{2^x} - 2}}} \right)^2} = 2$
$ \Leftrightarrow {\mathop{\rm }\nolimits} lo{g_5}{\left( {\frac{{{4^x} - 6}}{{{2^x} - 2}}}
\right)^2} = 1 = {\log _5}5$$ \Leftrightarrow  4^x – 6 = (2^x – 2)5$
$ \Leftrightarrow  2.2^{2x} – 5.2^{2x}  + 4 = 0$
 Đặt $u = 2^x > 0$
$ \Leftrightarrow  u^2 – 5u + 4  \Leftrightarrow $ $\left[ \begin{array}{l}
u = 1 \Leftrightarrow {2^x} = 1 = {2^0} \Leftrightarrow x = 0 {\rm{          }}(loại){\rm{ }}\\
u = 4 \Leftrightarrow {2^x} = 4 = {2^2} \Leftrightarrow x = 2
\end{array} \right.$

Thẻ

Lượt xem

963

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003