Rút gọn các biểu thức :
$a)$ ${\left( {\frac{{\sqrt[4]{{ax^3}} - \sqrt[4]{{{a^3}x}}}}{{\sqrt a  - \sqrt x }} - \frac{{1 + \sqrt {ax } }}{{\sqrt[4]{{ax}}}}} \right)^{ - 2}}\sqrt {1 + 2\sqrt {\frac{a}{x} + \frac{a}{x}} } $
     (với $a > 0, x > 0, a \neq x$)   
$b$) $\left( {\frac{{\sqrt {1 + a} }}{{\sqrt {1 + a}  - \sqrt {1 - a} }} + \frac{{1 - a}}{{\sqrt {1 - {a^2}}  - 1 + a}}} \right)\left( {\sqrt {\frac{1}{{{a^2}}}-1}   - \frac{1}{a}} \right)$
(với $0 < a < 1$)
$a)$    
Ta có :     $A = \frac{{\sqrt[4]{{{\rm{a}}{{\rm{x}}^3}}} - \sqrt[4]{{{a^3}x}}}}{{\sqrt a  - \sqrt
x }} - \frac{{1 + \sqrt {{\rm{ax}}} }}{{\sqrt[4]{{{\rm{ax}}}}}}$
= $\frac{{ - \sqrt[4]{{{\rm{ax}}}}\left( {\sqrt[4]{{{a^2}}} - \sqrt[4]{{{x^2}}}} \right)}}{{\sqrt a
 - \sqrt x }} + \frac{{1 + \sqrt {{\rm{ax}}} }}{{\sqrt[4]{{{\rm{ax}}}}}}$
$ = \frac{{ - \sqrt[4]{{{\rm{ax}}}}\left( {\sqrt a  - \sqrt x } \right)}}{{\sqrt a  - \sqrt x }} +
\frac{{1 + \sqrt {{\rm{ax}}} }}{{\sqrt[4]{{{\rm{ax}}}}}}$
$ =  - \sqrt[4]{{{\rm{ax}}}} + \frac{{1 + \sqrt {{\rm{ax}}} }}{{\sqrt[4]{{{\rm{ax}}}}}} = \frac{{
- \sqrt {{\rm{ax}}}  + 1 + \sqrt {{\rm{ax}}} }}{{\sqrt[4]{{{\rm{ax}}}}}} =
\frac{1}{{\sqrt[4]{{{\rm{ax}}}}}}$
${A^{ - 2}} = {\left( {\frac{1}{{\sqrt[4]{{{\rm{ax}}}}}}} \right)^{ - 2}} = \sqrt {{\rm{ax}}} $
$B = \sqrt {1 + 2\sqrt {\frac{a}{x} + \frac{a}{x}} }  = \sqrt {1 + 2\sqrt {\frac{a}{x} + {{\left(
{\sqrt {\frac{a}{x}} } \right)}^2}} }$
$  = \sqrt {{{\left( {1 + \sqrt {\frac{a}{x}} } \right)}^2}}  = 1
+ \sqrt {\frac{a}{x}} $
$ \Rightarrow {A^{ - 2}}.B = \sqrt {{\rm{ax}}} \left( {1 + \sqrt {\frac{a}{x}} } \right) = \sqrt
{{\rm{ax}}}  + a$
$b)$ E $ = \frac{{\sqrt {1 + a} }}{{\sqrt {1 + a}  - \sqrt {1 - a} }} + \frac{{1 - a}}{{\sqrt {1 -
{a^2}}  - 1 + a}}$
    $ = \frac{{\sqrt {1 + a} }}{{\sqrt {1 + a}  - \sqrt {1 - a} }} + \frac{{{{\left( {\sqrt {1 -
a} } \right)}^2}}}{{\sqrt {1 - a} \sqrt {1 + a}  - (1 - a)}}$
    $ = \frac{{\sqrt {1 + a} }}{{\sqrt {1 + a}  - \sqrt {1 - a} }} + \frac{{{{\left( {\sqrt {1 -
a} } \right)}^2}}}{{\sqrt {1 - a} \left( {\sqrt {1 + a}  - \sqrt {1 - a} } \right)}}$
    $ = \frac{{\sqrt {1 + a} }}{{\sqrt {1 + a}  - \sqrt {1 - a} }} + \frac{{\sqrt {1 - a}
}}{{\sqrt {1 + a}  - \sqrt {1 - a} }}$
    $ = \frac{{\sqrt {1 + a}  + \sqrt {1 - a} }}{{\sqrt {1 + a}  - \sqrt {1 - a} }} =
\frac{{{{\left( {\sqrt {1 + a}  + \sqrt {1 - a} } \right)}^2}}}{{2{\rm{a}}}}$
    $ = \frac{{1 + a + 2\sqrt {1 - {a^2} + 1 - a} }}{{2{\rm{a}}}} = \frac{{1 + \sqrt {1 -
{a^2}} }}{a}$
    $F = \sqrt {\frac{1}{{{a^2}}} - 1}  - \frac{1}{a} = \sqrt {\frac{{1 - {a^2}}}{{{a^2}}}}
 - \frac{1}{a} = \frac{{\sqrt {1 - {a^2}} }}{a} - \frac{1}{a} = \frac{{\sqrt {1 - {a^2}}  - 1}}{a}$
    $ \Rightarrow E.F = \frac{{1 + \sqrt {1 - {a^2}} }}{a}.\frac{{\sqrt {1 - {a^2}}  - 1}}{a}
= \frac{{1 - {a^2} - 1}}{{{a^2}}} =  - \frac{{{a^2}}}{{{a^2}}} =  - 1$

Thẻ

Lượt xem

1205

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003