|
Ta có: Đặt $u = \ln x\,\,\, \Rightarrow \,\,\,du = \frac{{dx}}{x}$ $dv = \frac{{dx}}{{{{\left( {x + 1} \right)}^2}}}\,\,\,\, \Rightarrow \,\,\,\,\,v = - \frac{1}{{x + 1}}$ $\begin{array}{l} I = - \left. {\frac{{\ln x}}{{x + 1}}} \right]_{\frac{1}{e}}^e + \int\limits_{\frac{1}{e}}^e {\frac{{dx}}{{x\left( {x + 1} \right)}}} = - \left( {\frac{1}{{e + 1}} + \frac{e}{{e + 1}}} \right) + \int\limits_{\frac{1}{e}}^e {\left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right)dx} \\ \,\,\, = - 1 + \left. {\ln \left| x \right|} \right]_{\frac{1}{e}}^e - \left. {\ln \left| {x + 1} \right|} \right]_{\frac{1}{e}}^e = - 1 + \left( {1 + 1} \right) - \ln e = 0 \end{array}$ Vậy $I = 0$
|