Đáp án mới nhất

7

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a.Hình chiếu vuông góc Của A' xuống mặt phẳng (ABC) là trung điểm của AB.Mặt bên (AA'C'C) tạo với đáy một góc bằng 45 độ.Tính thể tích của khối lăng trụ này.
10

Cho đường tròn (0) đường kính AB. Chọn 1 điểm C bất kì ( C # A, B sao cho CA > CB ). Từ A và C kẻ 2 tiếp tuyến cắt nhau tại D ( A và C là tiếp điểm ). Từ C kẻ CH vuông góc với AB. a) C/M : tứ giác OADC nội tiếp ( này nhắm mắt cũng ra nên khỏi làm...
6

Trên cùng một nửa mặt phẳng bờ chứa tia Õ . Vẽ tia Oy và Oz sao cho góc xOy = 800 , góc xOz = 400 a) So sánh góc xOz và yOzb) Tia Oz có phải là tia phân giác của gó xOy không vì sao ?c) Gọi Om là tia đối của Oz , On là tia đối của Oy . So sánh góc...
2

Cho hình chóp tam giác đều SABC có cạnh AB bằng Các cạnh bên SA, SB, SC tạo với đáy môt góc 60°. Gọi D là giao điểm của SA với mặt phảng qua BC và vuông góc với SA.a) Tính tỉ số thể tích cùa hai khối chóp S.DBC và S.ABCb) Tính thể tích cùa khối chóp S.DBC.
4

Cho hình chóp tam giác đều SABC có cạnh AB bằng Các cạnh bên SA, SB, SC tạo với đáy môt góc 60°. Gọi D là giao điểm của SA với mặt phảng qua BC và vuông góc với SA.a) Tính tỉ số thể tích cùa hai khối chóp S.DBC và S.ABCb) Tính thể tích cùa khối chóp S.DBC.
1

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh = a. Chiều cao = h. Tính $d(SA;BD)$
1

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh $4\sqrt{2}$ ; SA vuông góc với đáy; SA=3; M là trung điểm BC; N là trung điểm AB. Mặt phẳng $\left ( \alpha \right )$ chứa SN và song song AM. Tính $d\left ( A;\left ( (\alpha \right ) \right )$
2

Cho hinh chop S. ABCD có đáy là hình chữ nhật có AB=a; AD=2a; SA vuông góc với đáy; SA=a. Tính $d(SA;BD)$
1

Cho hình chóp S.ABCD có đáy là hình thang cân có AB=BC=CD=a; AD=2a; SA vuông góc với $\left ( ABCD \right )$; SA=$a\sqrt{6}$. Tình $d\left ( B;\left ( SCD \right ) \right ) và d\left ( AD;\left ( SBC \right ) \right )$
2

Cho góc tam diện Sxyz với $\widehat{xSy}=120^{o}$, $\widehat{ySz}=60^{o}$, $\widehat{zSx}=90^{o}$. Trên các tia Sx, Sy, Sz lần lượt lấy A, B, C thỏa SA = SB = SC = a. Chứng minh $\triangle ABC$ vuông và tính khoảng cách từ S đến mp(ABC)
2

Cho tam giác ABC đều cạnh A, H là điểm đối xứng của trọng tâm G qua BC. Trên đường vuông góc với mp(ABC) tại H, ta lấy điểm S.a) Chứng minh: Tam giác SAC và SAB vuông; tam giác SBC cânb) Tính SH nếu biết tam giác SAC cân
3

Cho hình chóp S.ABCD, đáy là hình thoi cạnh a, góc BAD = 60 °. Gọi O là tâm đáy, biết rằng SO ⊥ (ABCD) và SO= $\frac{3a}{4}$. Gọi I, K lân lượt là hình chiếu vuông góc của O xuống AD và BC.a, CMR: (SAC) ⊥ (ABCD); BC ⊥ (SIK)b, Tính góc tạo bởi (SBC) và...
3

Cho hình chóp S.ABCD, đáy là hình thoi cạnh a, góc BAD = 60 °. Gọi O là tâm đáy, biết rằng SO ⊥ (ABCD) và SO= $\frac{3a}{4}$. Gọi I, K lân lượt là hình chiếu vuông góc của O xuống AD và BC.a, CMR: (SAC) ⊥ (ABCD); BC ⊥ (SIK)b, Tính góc tạo bởi (SBC) và...
1

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, $\widehat{BAD=60^0}$SO ⊥ (ABCD), SO = $\frac{3a}{4}$. Gọi E, E lần lượt là trung điểm của BC, BE.1, C/m: (SAC) ⊥ (SBD), (SOF) ⊥ (SBC)2, Tính khoảng cách từ O, A đến (SBC)3, Tính góc giữa...
0

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, $\widehat{BAD=60^0}$SO ⊥ (ABCD), SO = $\frac{3a}{4}$. Gọi E, E lần lượt là trung điểm của BC, BE.1, C/m: (SAC) ⊥ (SBD), (SOF) ⊥ (SBC)2, Tính khoảng cách từ O, A đến (SBC)3, Tính góc giữa...
0

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, $\widehat{BAD=60^0}$SO ⊥ (ABCD), SO = $\frac{3a}{4}$. Gọi E, E lần lượt là trung điểm của BC, BE.1, C/m: (SAC) ⊥ (SBD), (SOF) ⊥ (SBC)2, Tính khoảng cách từ O, A đến (SBC)3, Tính góc giữa...
0

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, $\widehat{BAD=60^0}$SO ⊥ (ABCD), SO = $\frac{3a}{4}$. Gọi E, E lần lượt là trung điểm của BC, BE.1, C/m: (SAC) ⊥ (SBD), (SOF) ⊥ (SBC)2, Tính khoảng cách từ O, A đến (SBC)3, Tính góc giữa...
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003