S = sin2200 +sin2700 +sin2500 +sin21000 −√32cos500 sin2200 +sin2700 = 1 ( 2 góc phụ nhau )
\Rightarrow S = 1 + \sin^{2}50^{0} + \sin^{2}100^{0} -\frac{\sqrt{3}}{2}\cos 50^{0} \left ( 1\right )
= 1 + \frac{1-\cos 100^{0} +1 - \cos 200^{0}}{2} -\frac{\sqrt{3}}{2}\cos 50^{0}
= 1 + 1 - \frac{1}{2} \left ( \cos 100^{0} + \cos 200^{0} \right ) - \cos 30^{0}\cos 50^{0}
= 1 + 1 - \cos 150^{0}\cos 50^{0} - \cos 30^{0}\cos 50^{0}
= 1 + 1 - \cos 50^{0} \left ( \cos 150^{0}+ \cos 30^{0} \right )
= 1 + 1 - \cos 50^{0} \left ( - \cos 30^{0}+ \cos 30^{0} \right )
= 1 + 1 + 0
= 2