S = sin2200 +sin2700 +sin2500 +sin21000 −√32cos500 sin2200 +sin2700 = 1 (2gócphụnhau)
⇒ S = 1 +sin2500 +sin21000 −√32cos500 (1)
= 1 +1−cos1000+1−cos20002 −√32cos500
= 1 +1 −12 (cos1000+cos2000) −cos300cos500
= 1 +1 −cos1500cos500 −cos300cos500
= 1 +1 −cos500 (cos1500+cos300)
= 1 +1 −cos500 (−cos300+cos300)
= 1 +1 +0
= 2