|
a) $(2\cos x-1)(2\sin2x+1)+4\sin\frac{3x}{2}\sin\dfrac{x}{2}=1$ $\Leftrightarrow 4\cos x \sin 2x+2\cos x-2\sin 2x-1-2(\cos 2x -\cos x)=1$ $\Leftrightarrow 4\cos x \sin 2x+4\cos x-2\sin 2x-2\cos 2x -2=0$ $\Leftrightarrow 2\cos x (\sin 2x+1)-(\sin 2x+1)-\cos 2x =0$ $\Leftrightarrow 2\cos x (\sin x+\cos x)^2-(\sin x+\cos x)^2-(\sin x+\cos x)(\cos x- \sin x)=0$ $\Leftrightarrow (\sin x+\cos x)(2\cos x\sin x+2\cos^2x-\sin x-\cos x-\cos x+ \sin x)=0$ $\Leftrightarrow (\sin x+\cos x)(\cos x\sin x+\cos^2x-2\cos x)=0$ $\Leftrightarrow (\sin x+\cos x)\cos x(\sin x+\cos x-2)=0$ Đến đây đơn giản em tự giải nốt nhé.
|