|
PT $\Leftrightarrow \sin\left(\dfrac{\pi }{3}-4x\right)+\sin\left(\dfrac{\pi }{6}+3x\right)+\sin x-\sin\dfrac{\pi }{2}=0$ $\Leftrightarrow 2\sin\left(\dfrac{\pi }{4}-\dfrac{x }{2}\right)\cos\left(\dfrac{\pi }{12}-\dfrac{7x }{2}\right)+2\cos\left(\dfrac{\pi }{4}+\dfrac{x }{2}\right)\sin\left(\dfrac{\pi }{4}-\dfrac{x }{2}\right)=0$ $\Leftrightarrow \left[ {\begin{matrix} \sin\left(\dfrac{\pi }{4}-\dfrac{x }{2}\right)=0\\ \cos\left(\dfrac{\pi }{12}-\dfrac{7x }{2}\right)=-\cos\left(\dfrac{\pi }{4}+\dfrac{x }{2}\right) \end{matrix}} \right.$ $\Leftrightarrow \left[ {\begin{matrix} \sin\left(\dfrac{\pi
}{4}-\dfrac{x }{2}\right)=0\\ \cos\left(\dfrac{\pi }{12}-\dfrac{7x
}{2}\right)=\cos\left(\pi-\dfrac{\pi }{4}-\dfrac{x }{2}\right)
\end{matrix}} \right.$ $\Leftrightarrow \left[ {\begin{matrix} \sin\left(\dfrac{\pi
}{4}-\dfrac{x }{2}\right)=0\\ \cos\left(\dfrac{\pi }{12}-\dfrac{7x
}{2}\right)=\cos\left(\dfrac{3\pi }{4}-\dfrac{x }{2}\right)
\end{matrix}} \right.$ Đến đây đơn giản.Em tự viết nốt nghiệm nhé.
|