|
b) Đặt t=−x⇒dt=−dx I=π/4∫−π/4sin6x+cos6x6x+1dx=−π/4∫π/4sin6(−t)+cos6(−t)6−t+1(−dt)=π/4∫−π/4(sin6t+cos6t)6t1+6tdt ⟹I=π/4∫−π/4(sin6x+cos6x)6x1+6xdx Suy ra 2I=I+I=π/4∫−π/4sin6x+cos6x6x+1dx+π/4∫−π/4(sin6x+cos6x)6x1+6xdx=π/4∫−π/4(sin6x+cos6x)dx =π/4∫−π/4(58+38cos4x)dx=[5x8+332sin4x]π/4−π/4=5π16
|