|
a) 4sinx(sinx+cosx)3=4sinx(sinx+cosx)(sinx+cosx)4=4sin2x+4sinxcosx(1+sin2x)2 =2−cos2x+2sin2x(1+sin2x)2=(sin2x+1)(2cos2x+2sin2x)−2cos2x(sin2x−cos2x+2)(1+sin2x)2 =(sin2x+1)(sin2x−cos2x+2)′−(sin2x+1)′(sin2x−cos2x+2)(1+sin2x)2=(sin2x−cos2x+21+sin2x)′ Suy ra π/4∫04sinx(sinx+cosx)3=[(sin2x−cos2x+21+sin2x)]π/40=12
|