|
$(\sin x +3)(\sin^4 \frac{x}{2}- \sin^2 \frac{x}{2})+1=0$ $\Leftrightarrow (\sin x +3) \sin^2 \frac{x}{2} (\sin^2 \frac{x}{2}-1) +1 =0$ $\Leftrightarrow - (\sin x +3) \sin^2 \frac{x}{2}. \cos^2 \frac{x}{2} +1 =0$ Do $\sin^2 a+ \cos^2 b =1 \Longrightarrow \sin^2 a -1 =\cos^2 b$ $\Leftrightarrow -(\sin x +3) \frac{(2 \sin \frac{x}{2}. \cos \frac{x}{2})^2}{4} +1 =0$ Do $\sin 2a = 2 \sin a. \cos a$ $\Leftrightarrow -(\sin x +3) \frac{\sin^2 x}{4} +1 =0$ $\Leftrightarrow -\sin^3 x -3 \sin^2 x +4 =0$
|