Ta có: 1a+1≥2−(1b+1+1c+1)=(1−1b+1)+(1−1c+1)=bb+1+cc+1≥2×bc(b+1)(c+1)−−−−−−−−−−−−√ (1)
CMTT: 1b+1≥2×ac(a+1)(c+1)−−−−−−−−−−−−√ (2)
1c+1≥2×ab(a+1)(b+1)−−−−−−−−−−−−√ (3)
Lấy (1)×(2)×(3) , ta được: 1(a+1)(b+1)(c+1)≥8abc(a+1)(b+1)(c+1)
⇔8abc≤1⇔abc≤18
Dấu "=" xr ⇔a=b=c=12
⇒maxP=18⇔a=b=c=12