|
|
{2y=x3+1(x−y)(x2−xy+y2+2)=0 ⇔{2y=x3+1x=y(1) Hoặc{2y=x3+1x2−xy+y2+2=0(2) (1)⇔{x3−2x+1=0x=y ⇔{(x−1)(x2+x−1)=0x=y ⇔{(x−1)(x+1+√52)(x+1−√52)x=y ⇒(x;y)=[(1;1);(−1+√52;−1+√52);(−1−√52;−1−√52)] (2)⇔{2y=x3+1(x+y)2−3xy+2=0 Đặt{S=x+yP=xy; ĐK : S2≥4P (Viét) (3) (2),(3)⇒{S2−3P+2=0S2≥4P⇔{P=S2+23S2≥4.S2+23⇒S2+83≤0⇔S∈∅ ⇒(2) vô nghiệm.
|