|
|
Câu 1 a) cos(2x+π3)+cos(x−π4)=0 ⇔cos(2x+π3)=cos(x−π4) ⇔x=−7π12+k2π hoặc x=−π36+k2π3 b) cos28x−sin22x=sin(17π2+10x) ⇔1+cos16x−1+cos4x=−2cos10x ⇔cos16x+cos4x+2cos10x=0 ⇔2cos10x(cos6x+1)=0 c) 12cosx−5sinx+13=0 ⇔1213cosx−513sinx=−1 ⇔cos(x+α)=−1 (Với {cosα=1213sinα=513)
|