Gọi x là vận tốc của xe mô tô thứ 2 ( km/h)
t là thời gian của xe mô tô thứ 2 đi hết quảng đường (h)
Ta có : xe thứ 2 trong 1 giờ chậm hơn xe thứ nhất 15 km nên vận tốc của xe thứ nhất là x+15 (km/h)
Xe thứ 2 nhanh hơn xe thứ 3 3km nên vận tốc của xe thứ 3 là x-3 (km/h)
Ta lại có : xe thứ 2 đến đích chậm hơn xe thứ 1 là 12 phút=$\frac{1}{5}$h nên thời gian xe thứ 1 đi đến đích là t-$\frac{1}{5}$(h)
Xe thứ 2 đến đích nhanh hơn xe thứ 3 là 3 phút =$\frac{1}{20}$h nên thời gian xe thứ 3 đi đến đích là $t+\frac{1}{20}$(h)
Tóm lại ta có : $S =S_{1}=S_{2}=S_{3}$( S là quảng đường )
$\Leftrightarrow xt=(x+15)(t-\frac{1}{5})=(x-3)(t+\frac{1}{20})$
Xét : $xt=(x+15)(t-\frac{1}{5})=xt-\frac{x}{5}+15t-3$ Chuyển vế ta được :$\frac{-x}{5}+15t=3$(1)
Xét : $xt=(x-3)(t+\frac{1}{20})=xt+\frac{x}{20}-3t-\frac{3}{20}$ Chuyển vế ta được :$\frac{x}{20}-3t=\frac{3}{20}$(2)
Từ (1)(2) giải hệ ta được : x=75km/h;t=1,2h
S=xt=75.1,2=90km
Còn lại thế vào là tìm ra