1.    Hệ trục tọa độ trong không gian
 
-    Định nghĩa: Hệ gồm $3$ trục $Ox, Oy, Oz$ đôi một vuông góc được gọi là hệ trục tọa độ vuông góc trong không gian
Thuật ngữ và ký hiệu:
-    Hệ trục tọa độ trong định nghĩa trên còn được gọi đơn giản là hệ tọa độ trong không gian, ký hiệu là $Oxyz$. Ta thường gọi các vecto đơn vị trên các trục $Ox, Oy, Oz$ lần lượt là $\overrightarrow {i,} \,\overrightarrow {j,} \,\overrightarrow k $ và còn ký hiệu hệ trục tọa độ là $(O;\overrightarrow {i,} \,\overrightarrow {j,} \,\overrightarrow k )$. Điểm $O$ gọi lả gốc của hệ tọa độ, $Ox$ gọi là trục hoành, $Oy $ là trục tung và $Oz$ là trục cao
-    Các mặt phẳng đi qua 2 trong 3 trục tọa độ gọi là các mặt phẳng tọa độ, ta ký hiệu chúng là mp$(Oxy)$, mp$(Oyz)$ và mp$(Ozx)$ hoặc đơn giản hơn là $(Oxy), (Oyz), (Ozx)$
-    Khi không gian đã có 1 hệ tọa độ $Oxyz$ thì nó được gọi là không gian tọa độ $Oxyz$ hoặc đơn giản hơn là không gian $Oxyz$
-    Chú ý các đẳng thức sau:
    $\begin{gathered}
  {\overrightarrow i ^2} = {\overrightarrow j ^2} = {\overrightarrow k ^2} = 1  \\
  \overrightarrow i .\overrightarrow j  = \overrightarrow j .\overrightarrow k  = \overrightarrow k .\overrightarrow i  = 0  \\
\end{gathered} $
2.    Tọa độ của vecto
-    Trong không gian tọa độ $Oxyz$ với các vecto đơn vị $\overrightarrow i ,\overrightarrow j ,\overrightarrow k $ trên các trục, cho 1 vecto $\overrightarrow u $. Khi đó có bộ 3 số duy nhất (x;y;z) sao cho $\overrightarrow u  = x\overrightarrow i  + y\overrightarrow j  + z\overrightarrow k $. Bộ 3 số đó gọi là tọa độ của vecto $\overrightarrow u $ đối với hệ tọa độ Oxyz và ký hiệu  hoặc $\overrightarrow u (x;y;z)$
Vậy:$\overrightarrow u  = (x;y;z) \Leftrightarrow \overrightarrow u (x;y;z) \Leftrightarrow \overrightarrow u  = x\overrightarrow i  + y\overrightarrow j  + z\overrightarrow k $
Hiển nhiên ta có: $\overrightarrow i  = (1;0;0)\,\,;\overrightarrow j  = (0;1;1)\,\,;\overrightarrow k  = (0;0;1)$
Từ định nghĩa về tọa độ của vecto, ta dễ dàng suy ra các tính chất sau:
Cho các vecto $\overrightarrow {{u_1}}  = ({x_1};{y_1};{z_1}),\overrightarrow {{u_2}}  = ({x_2};{y_2};{z_2}),\overrightarrow {{u_3}}  = ({x_3};{y_3};{z_3})$ và số k tùy ý, ta có
$\begin{gathered}
  1)\,\overrightarrow {{u_1}}  = \overrightarrow {{u_2}}  \Leftrightarrow {x_1} = {x_2},{y_1} = {y_2},{z_1} = {z_2}  \\
  2)\,\overrightarrow {{u_1}}  \pm \overrightarrow {{u_2}}  = ({x_1} \pm {x_2};{y_1} \pm {y_2};{z_1} \pm {z_2})   \\
  3)\,k\overrightarrow {{u_1}}  = (k{x_1};k{x_2};k{x_3})   \\
  4)\,\overrightarrow {{u_1}} .\overrightarrow {{u_2}}  = {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}   \\
  5)\left| {\overrightarrow {{u_1}} } \right| = \sqrt {{{\overrightarrow {{u_1}} }^2}}  = \sqrt {{x_1}^2 + {y_1}^2 + {z_1}^2}   \\
  6)\,\cos (\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ) = \frac{{{x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}}}{{\sqrt {{x_1}^2 + {y_1}^2 + {z_1}^2} .\sqrt {{x_2}^2 + {y_2}^2 + {z_2}^2} }}\,\,\,\,\,(\overrightarrow {{u_1}}  \ne 0,\overrightarrow {{u_2}}  \ne 0)  \\
  7)\,\overrightarrow {{u_1}}  \bot \overrightarrow {{u_2}}  \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}}  = 0 \Leftrightarrow {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}=0   \\
\end{gathered} $
3.    Tọa độ của điểm
      Trong không gian tọa độ $Oxyz$, mỗi điểm $M$ được hoàn toàn xác định bởi vecto $\overrightarrow {OM} $. Bởi vậy, nếu $(x;y;z)$ là tọa độ của $\overrightarrow {OM} $ thì ta cũng nói $(x;y;z)$ là tọa độ của điểm $M$ và ký hiệu là $M = (x;y;z)$ hoặc $M(x;y;z)$
Như vậy: $M = (x;y;z) \Leftrightarrow \overrightarrow {OM}  = x\overrightarrow i  + y\overrightarrow j  + z\overrightarrow k $
 
Số x gọi là hoành độ, y là tung độ và z là cao độ của điểm M
4.    Liên hệ giữa tọa độ của vecto và tọa độ của 2 điểm mút
           Cho 2 điểm $A({x_A};{y_A};{z_A})\& B({x_B};{y_B};{z_B})$. Khi đó ta có:
$\begin{gathered}
  1)\,\overrightarrow {AB}  = ({x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A})  \\
  2)\,AB = \sqrt {{{({x_B} - {x_A})}^2} + {{({y_B} - {y_A})}^2} + {{({z_B} - {z_A})}^2}}    \\
\end{gathered} $
5.    Tích có hướng của 2 vecto:
            Tích có hướng (hay tích vecto) của 2 vecto $\overrightarrow u (a;b;c)\& \overrightarrow v (a';b';c')$ là 1 vecto, kí hiệu là ${\text{[}}\overrightarrow u ,\overrightarrow v {\text{]}}$ hoặc $\overrightarrow u  \wedge \overrightarrow v $, được xác định bằng tọa độ như sau:
${\text{[}}\overrightarrow u ,\overrightarrow v {\text{] = }}\left( {\left| \begin{gathered}
  b\,\,\,\,\,c  \\
  b'\,\,\,c'   \\
\end{gathered}  \right|;\left| \begin{gathered}
  c\,\,\,\,a   \\
  c'\,\,a'   \\
\end{gathered}  \right|;\left| \begin{gathered}
  a\,\,\,\,b   \\
  a'\,\,b'   \\
\end{gathered}  \right|} \right) = \left( {bc' - b'c;ca' - a'c;ab' - a'b} \right)$
   Tính chất của tích có hướng:
1.    Vecto ${\text{[}}\overrightarrow u ,\overrightarrow v {\text{]}}$ vuông góc với cả 2 vecto $\overrightarrow u \& \overrightarrow v $ tức là:
${\text{[}}\overrightarrow u ,\overrightarrow v {\text{]}}{\text{.}}\overrightarrow u  = {\text{[}}\overrightarrow u ,\overrightarrow v {\text{]}}.\overrightarrow v  = 0$
2.    $\left| {\left[ {\overrightarrow u ,\overrightarrow v } \right]} \right| = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\sin (\overrightarrow u ,\overrightarrow v )$
3.    $\left[ {\overrightarrow u ,\overrightarrow v } \right] = 0$ khi và chỉ khi 2 vecto $\overrightarrow u \& \overrightarrow v $ cùng phương
Ứng dụng của tích có hướng:
a)    Tính diện tích hình bình hành:
Nếu ABCD là hình bình hành thì diện tích của nó là: $S = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]} \right|$
b)    Tính thể tích khối chóp:
 
Nếu ABCD.A’B’C’D’  là hình hộp với diện tích đáy ABCD là S, chiều cao là h = AH, $\varphi $ là góc hợp bởi 2 vecto $\overrightarrow {{\text{AA}}'} \& \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]$ thì thể tích của hình hộp đó là:
$V = S.h = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]} \right|.AH = \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\left| {\overrightarrow {{\text{AA}}'} } \right|.c{\text{os}}\varphi $
Một số tính chất liên quan đến tích vô hướng và tích có hướng:
$\overrightarrow u  \bot \overrightarrow v  \Leftrightarrow \overrightarrow u .\overrightarrow v  = 0$
$\overrightarrow u $ và $\overrightarrow v $ cùng phương $ \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow v } \right] = 0$
$\overrightarrow u ,\overrightarrow v ,\overrightarrow {\text{w}} $ đồng phẳng $ \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\text{w}}  = 0$
6.    Phương trình mặt cầu:
Trong không gian tọa độ Oxyz , mặt cầu tâm $I({x_0};{y_0};{z_0})$, bán kính R có phương trình:
${(x - {x_0})^2} + {(y - {y_0})^2} + {(z - {z_0})^2} = {R^2}$
Phương trình ${x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0$ là phương trình của mặt cầu khi và chỉ khi ${a^2} + {b^2} + {c^2} > d$. Khi đó tâm mặt cầu là điểm $I( - a; - b; - c)$ và bán kính: $R = \sqrt {{a^2} + {b^2} + {c^2} - d} $

Thẻ

Lượt xem

47838
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003