1.     Phương pháp quy nạp toán học
          Để chứng minh mệnh đề chứa biến $A(n)$ là một mệnh đề đúng với mọi giá trị nguyên dương của biến $n$, ta thực hiện hai bước sau:
·        Bước 1: (bước có sở, hay bước khởi đầu). Chứng minh $A(n)$là một mệnh đề đúng khi $n = 1$.
·        Bước 2: ( bước quy nạp với giả thiết quy nạp). Với $k$ là một số nguyên dương tùy ý, xuất phát từ giả thiết $A(n)$ là một mệnh đề đúng khi $n = k$, chứng minh $A(n)$ cũng là một mệnh đề đúng khi $n = k + 1$.
2.     Ví dụ áp dụng
Ví dụ 1: Chứng minh rằng với mọi số nguyên dương n, ta luôn có
${1^3} + {2^3} + ... + {n^3} = \frac{{{n^2}{{(n + 1)}^2}}}{4}$            (3)
Giải: ta sẽ giải bài toán bằng phương pháp quy nạp.
+  Với $n = 1$, ta có
${1^3} = 1 = \frac{{{1^2}{{(1 + 1)}^2}}}{4}$
          Như vậy (3) đúng khi $n = 1$
+ Giả sử (3) đúng khi $n = k,k \in {\mathbb{N}^*}$, tức là
${1^3} + {2^3} + ... + {k^3} + {(k + 1)^3} = \frac{{{{(k + 1)}^2}{{(k + 2)}^2}}}{4}$
Thật vậy, từ giả thiết quy nạp, ta có
$\begin{gathered}
  {1^3} + {2^3} + ... + {k^3} + {(k + 1)^3} = \frac{{{k^2}{{(k + 1)}^2}}}{4} + {(k + 1)^3} = \frac{{{{(k + 1)}^2}}}{4}.({k^2} + 4k + 4)   \\
   = \frac{{{{(k + 1)}^2}{{(k + 2)}^2}}}{4}   \\
\end{gathered} $
Vậy (3) đúng với mọi số nguyên dương n.
·        CHÚ Ý: Bài toán với yêu cầu chứng minh mệnh đề chứa biến $A(n)$là một  mệnh đề đúng với mọi giá trị nguyên dương $n \geqslant p$, trong đó $p$là một số nguyên dương cho trước.
·        Để giải quyết bài toán đặt ra bằng phương pháp quy nạp, ở bước 1 ta cần chứng minh $A(n)$là mệnh đề đúng khi $n = p$ và ở bước 2, cần xét giả thiết quy nạp với $k$là số nguyên dương tùy ý lớn hơn hoặc bằng p.
Ví dụ 2: Chứng minh rằng với mọi số nguyên dương $n \geqslant 3$, ta luôn có
$${2^n} > 2n + 1$$
          Giải: Ta sẽ giải bài toán bằng phương pháp quy nạp:
+ Với n=3, ta có
${2^n} = {2^3} = 8$ và $2n + 1 = 2.3 + 1 = 7$.
Rõ ràng 8 > 7, và do đó (4) đúng khi $n = 3$.
+ Giả sử (4) đúng khi $n = k,k \in {\mathbb{N}^*}$và $k \geqslant 3$, tức là
$${2^k} > 2k + 1$$,
Ta sẽ chứng minh nó cũng đúng khi $n = k + 1$, tức là
$${2^{k + 1}} > 2(k + 1) + 1$$
Thật vậy, từ giả thiết quy nạp, ta có
$${2^{k + 1}} = {2.2^k} > 2(2k + 1) = 4k + 2 > 2k + 3 = 2(k + 1) + 1$$
Vậy (4) đúng với mọi số nguyên dương $n \geqslant 3$

Thẻ

Lượt xem

8886
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003