HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I


LÝ THUYẾT VÀ PHƯƠNG PHÁP
1.  Dạng tồng quát của hệ đối xứng loại I:
Định nghĩa:

Hệ đối xứng loại I là hệ chứa 2 ẩn x,y mà khi ta thay đổi vai trò x,y cho nhau thì hệ phương trình không thay đổi.
{f(x,y)=0g(x,y)=0 , trong đó {f(x,y)=f(y,x)g(x,y)=g(y,x)

Phương pháp giải tổng quát:
i) Bước 1: Đặt điều kiện (nếu có)
ii) Bước 2: Đặt S = x + y; P = xy (với S2 4P) .
Khi đó, ta đưa hệ về hệ mới chứa S,P.
iii) Bước 3: Giải hệ mới tìm S,P. Chọn S,P thỏa mãn  S2 4P.
iiii) Bước 4: Với S,P tìm được thì x,y là nghiệm của phương trình:
             X2 – SX + P = 0     ( định lý Viét đảo)

Chú ý:
i) Cần nhớ:
+y2=S22Px3+y3=S33SP

ii) Đôi khi ta phải đặt ẩn phụ:
                 {u=u(x)v=v(x)    và    {S=u+vP=uv
iii) Có những hệ phương trình trở thành hệ đối xứng loại I sau khi ta đặt ẩn phụ.

2.  Một số ví dụ minh họa:
Ví dụ 1:

Gải hệ phương trình sau:
      {+y2+xy=7x2+y2+x+y=8    (1)
Giải:
Đặt:    {=x+yP=xy    , với  S2 4P.
Khi đó, hệ (1) trở thành:
{S2P=7S22P+S=8{P=S27S22(S27)+S=8{P=S27S2S6=0{P=S27[S=3S=2
Với: S=3P=2.
Khi đó, x và y là nghiệm của phương trình: X23X+2=0
\displaystyle{\Leftrightarrow \left[ {\begin{array}{*{20}{c}}    {X = 1} \\     {X = 2}   \end{array}} \right. \Leftrightarrow \left[ \begin{array}    \left\{ \begin{array}    x = 1  \\    y = 2  \\   \end{array}  \right.  \\    \left\{ \begin{array}    x = 2  \\    y = 1  \\   \end{array}  \right.  \\   \end{array}  \right.}
Với: S=2P=3.
Khi đó, x và y là ngiệm của phương trình:X2+2X3=0
[X=1X=3[{x=1y=3{x=3y=1
Vậy hệ đã cho có 4 nghiệm
(x,y) = (1;2), (2;1), (1;–3), (–3;1).

Ví dụ 2:

Giải hệ phương trình:
{+y+1x+1y=5x2+y2+1x2+1y2=9
Giải:
Đặt:    {=x+1xv=y+1y{+1x2=u22y2+1y2=v22
Khi đó, hệ (1) trở thành:
{u+v=5u2+v2=13 {u+v=5(u+v)22uv=13 {u+v=5uv=6
u, v là nghiệm của phương trình:    X2 – 5X + 6 = 0
         [X=3X=2[{u=2v=3{u=3v=2
Trường hợp 1:   u = 2; v = 3
{x+1x=2y+1y=3 {x=1y=3+52{x=1y=352
Trường hợp 2:   u = 3; v = 2
  {x+1x=3y+1y=2{x=3+52y=1{x=352y=1
Vậy hệ đã cho có 4 nghiệm (x,y) là:
 (1;3+52), (1;352), (3+52;1), (352;1).

3.  Điều kiện tham số để hệ đối xứng loại I có nghiệm:
Phương pháp giải tổng quát:

i) Bước 1: Đặt điều kiện (nếu có).
ii) Bước 2: Đặt S = x + y; P = xy với điều kiện của S,P và S2 4P (*).
iii) Bước 3: Thay x,y bởi S,P vào hệ phương trình.
Giải hệ tìm S,P theo m, rồi từ điều kiện (*) tìm m  (với m là tham số)

Ví dụ 3:
Tìm điều kiện m để hệ phương trình sau có nghiệm:
{x4+y1=4x+y=3m(1)
Giải:
Đặt:    {=x4 0v=y1 0
Khi đó, hệ (1) trở thành:
{u+v=4u2+v2=3m5        {u+v=4uv=213m2
Suy ra u,v là nghiệm (không âm) của phương trình:
X24X+213m2=0 (*)
Theo đề, hệ (1) có nghiệmPt (*) có 2 nghiệm không âm.
{Δ0P0S0 {3m1320213m20  133m7.
Vậy 133m7 là giá trị cần tìm.

Ví dụ 4:
Tìm m để hệ phương trình sau có nghiệm thực:
{x+y=1xx+yy=13m (1)
Giải:
Điều kiện:    x0; y0
Khi đó:
{x+y=1xx+yy=13m  {x+y=1(x)3+(y)3=13m
Đặt:        S=x+y0; P = xy0 (S24P)
Hệ phương trình trở thành:
{S=1S33SP=13m  {S=1P=m
Hệ (1) có nghiệm thực
 {S24PP0S0  {14mm0  0m14
Vậy 0m14 là giá trị cần tìm.

BÀI TẬP RÈN LUYỆN
Bài 1:

Giải hệ phương trình: {x+y+xy=19x2+y2+xy=133.

Bài 2:
Giải hệ phương trình: {+y+1x+1y=4x2+y2+1x2+1y2=4.

Bài 3:
Tìm m để hệ phương trình có đúng 2 nghiệm thực phân biệt.            {+y2=2(1+m)(x+y)2=4

Bài 4:
Tìm m để hệ phương trình sau có nhgiệm thực:
{x2+y2+4x+4y=10xy(x+4)(y+4)=m 

Bài 5:
Tìm m để hệ phương trình có nghiệm thực x > 0, y > 0:
{+xy+y=m+1x2y+xy2=m

minh muon ket ban vs cac pro toan hoc . lam quen o nick zing : linhhonbidanhtrai_99 nhe (nho ghi ro loi moi ket ban la thanh vien cua ''hoc tai nha'' nhe)chung ta se chia se kinh nghiem hoc tap cho nhau nhe :(( –  hattorihejji0110 17-09-13 08:57 PM

Thẻ

Lượt xem

110303
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003