Đáp án mới nhất

0

Cho hình chóp SABCD có đáy là hình bình hành tâm O. Gọi M và N là trung điểm của $AB$ và $SC.$a. Tìm giao tuyến $(SAC)$ và $(SBD) ; (SAB)$ và $(SCD)$b. Chứng minh: $MN//(SAD)$c. Chứng minh: đường thẳng AN đi qua trọng tâm của $\triangle SBD$d. Gọi P...
1

cho hình chóp $S.ABCD$, đáy $ABCD$ là hình bình hành, tâm $O, M,G$ là trông tâm tam giác $SAB,ACD. E$ thuộc $SC$ sao cho $EC=2ES$a) cm: $MG//(SAD)$b) cm: $(MEG)//(SAD)$
1

cho hình chóp $S.ABCD$, đáy $ABCD$ là hình bình hành, tâm $O, M,G$ là trông tâm tam giác $SAB,ACD. E$ thuộc $SC$ sao cho $EC=2ES$a) cm: $MG//(SAD)$b) cm: $(MEG)//(SAD)$
1

Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình bình hành tâm $O$. $G1,G2 $ là trọng tâm tam giác $ACD, SAB$. $K\in BC$ sao cho $2BK=KC$. $M,N \in SD$ sao cho $SN=MN=MD $. Cm: $NK//(SAB)$
2

Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình bình hành tâm $O$. $G1,G2 $ là trọng tâm tam giác $ACD, SAB$. $K\in BC$ sao cho $2BK=KC$. $M,N \in SD$ sao cho $SN=MN=MD $. Cm: $NK//(SAB)$
1

Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình bình hành tâm O. G1,G2 là trọng tâm tam giác $ACD, SAB$. $K\in BC$ sao cho $2BK=KC$. $M,N \in SD$ sao cho $SN=MN=MD $. Cm: $G1G2//(SAD)$
1

Cho hình chóp SABCD. Có ABCD là hình bình hành. M là trung điểm SC. mp$(\alpha)$ là mp đi qua AM và mp$(\alpha)$//BD.a, Xác định giao điểm E, F của mp$(\alpha)$ với cạnh SB, SD.b, Tính tỉ số $\frac{S_{\Delta SMF}}{S_{\Delta SCD}}, \frac{S_{\Delta...
5

Cho hình chóp $S.ABCD$ có đáy là hình thang, đáy lớn $BC=2a,\,AB=AD=a,\,\Delta SAD$ đều. Mặt phẳng $(\alpha)$ qua $M\in AB$ và song song với $SA,\,BC$. Mặt phẳng $(\alpha)$ cắt $CD,\,SC,\,SB$ lần lượt tại $N,\,P,\,Q.$ a) Chứng minh $MNPQ$ là...
2

Cho hình chóp $S.ABCD$ có đáy là hình thang, đáy lớn $BC=2a,\,AB=AD=a,\,\Delta SAD$ đều. Mặt phẳng $(\alpha)$ qua $M\in AB$ và song song với $SA,\,BC$. Mặt phẳng $(\alpha)$ cắt $CD,\,SC,\,SB$ lần lượt tại $N,\,P,\,Q.$ a) Chứng minh $MNPQ$ là...
5

Cho hình chóp $S.ABCD$ có đáy là hình thang, đáy lớn $BC=2a,\,AB=AD=a,\,\Delta SAD$ đều. Mặt phẳng $(\alpha)$ qua $M\in AB$ và song song với $SA,\,BC$. Mặt phẳng $(\alpha)$ cắt $CD,\,SC,\,SB$ lần lượt tại $N,\,P,\,Q.$ a) Chứng minh $MNPQ$ là...
4

Cho hình chóp $S.ABCD$ có đáy là hình bình hành, $M\in SC,\,mp(\alpha)$ chứa $AM$ và song song với $BD$. a) Chứng minh $(\alpha)$ luôn chứa một đường thẳng cố định khi $M$ di động trên $SC$. b) Mặt phẳng $(\alpha)$ cắt $SB,\,SD$ lần lượt tại...
4

Cho hình chóp $S.ABCD$ có đáy là hình bình hành, $M\in SC,\,mp(\alpha)$ chứa $AM$ và song song với $BD$. a) Chứng minh $(\alpha)$ luôn chứa một đường thẳng cố định khi $M$ di động trên $SC$. b) Mặt phẳng $(\alpha)$ cắt $SB,\,SD$ lần lượt tại...
2

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. $M,\,N$ lần lượt là trung điểm của $AB$ và $CD$. a) Chứng minh: $MN//(SBC),\,MN//(SAD)$ b) Gọi $P$ là trung điểm $SA$. Chứng minh: $SB,\,SC//(MNP)$ c) Gọi $G_1,\,G_2$ lần lượt...
2

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. $M,\,N$ lần lượt là trung điểm của $AB$ và $CD$. a) Chứng minh: $MN//(SBC),\,MN//(SAD)$ b) Gọi $P$ là trung điểm $SA$. Chứng minh: $SB,\,SC//(MNP)$ c) Gọi $G_1,\,G_2$ lần lượt...
4

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang ($AB$ là đáy lớn). Gọi $G_1,\,G_2$ lần lượt là trọng tâm $\Delta SBC$ và $\Delta SAD$ a) Chứng minh: $G_1G_2//(SAB),\,G_1G_2//(SCD)$ b) $E$ là giao điểm của $BC$ và $AD$, $M$ là giao điểm...
4

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang ($AB$ là đáy lớn). Gọi $G_1,\,G_2$ lần lượt là trọng tâm $\Delta SBC$ và $\Delta SAD$ a) Chứng minh: $G_1G_2//(SAB),\,G_1G_2//(SCD)$ b) $E$ là giao điểm của $BC$ và $AD$, $M$ là giao điểm...
3

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. $M,\,N$ lần lượt là trung điểm của $AB$ và $CD$. a) Chứng minh: $MN//(SBC),\,MN//(SAD)$ b) Gọi $P$ là trung điểm $SA$. Chứng minh: $SB,\,SC//(MNP)$ c) Gọi $G_1,\,G_2$ lần lượt...
2

Cho hình chóp $S.ABCD$ có đáy là hình thang $(AD//BC,\,AD>BC),\,M\in AB$. Mặt phẳng $(\alpha)$ qua $M$ và song song với $AD,\,SB.$ a) Tìm thiết diện của hình chóp với $(\alpha)$ b) Chứng minh: $SC//(\alpha)$
2

Cho hình chóp $S.ABCD$ có đáy là hình thang $(AD//BC,\,AD>BC),\,M\in AB$. Mặt phẳng $(\alpha)$ qua $M$ và song song với $AD,\,SB.$ a) Tìm thiết diện của hình chóp với $(\alpha)$ b) Chứng minh: $SC//(\alpha)$
3

Cho tứ diện $ABCD$. Gọi $M,\,N$ lần lượt là trọng tâm của $\Delta ABD,\,\Delta ACD.$ Chứng minh: $MN//(BCD),\,MN//(ABC).$
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003