Bài 3. Cho P=A1A2Ak là một đa giác lồi trong mặt phẳng. Các đỉnh A1,A2,Ak có tọa độ là các số nguyên và nằm trên một đường tròn. Gọi S là diện tích của P. Một số tự nhiên n lẻ thỏa mãn bình phương độ dài các cạnh của P đều chia hết cho n. Chứng minh rằng 2S là một số tự nhiên chia hết cho 
Nếu ai ko giải,t xin giải dùm(đề rất khó)(lời giải của thượng sĩ)

Trước hết, giả sử rằng đa giác A1A2Ak có một đường chéo thỏa mãn bình phương của đường chéo đó là một số nguyên chia hết cho n, khi đó ta sẽ cắt đa giác này bằng đường chéo này thành hai đa giác với số cạnh nhỏ hơn. Do đó không giảm tổng quát có thể giả sử đa giác A1A2Ak không có một đường chéo nào có bình phương chia hết cho n.

 

Giả sử k4. Không mất tính tổng quát, ta sẽ chứng minh cho trường hợp n=pa (p là số nguyên tố lẻ). Khi đó, xét một số tự nhiên r thỏa a>r0 và prAiAj2 với mọi ij0<i,jk. Hiển nhiên ta có r+1a nên pr+1paAiAj2 nếu Ai,Aj là hai đỉnh kề nhau.

 

Ta sẽ chứng minh bằng quy nạp rằng nếu r là một số tự nhiên thỏa mãn điều kiện trên thì r+1 cũng sẽ thỏa mãn các điều kiện trên. Do tất cả các đỉnh của đa giác cùng nằm trên một đường tròn nên xét cụ thể cho một tứ giác Ai1AiAi+1Aj và cho đơn giản, ta đặt: Ai1Ai=b,AiAi+1=c,Ai+1Aj=d,AjAi1=e,Ai1Ai+1=f,AiAj=g.

 

Và theo giả thiết quy nạp, ta đặt: b2=pax,c2=pay,d2=prz,e2=prk,f2=prw,g2=prt ( với x,y,z,k,w,t là các số nguyên) Khi đó theo định lý Ptolemy thì ta có được:bd+ce=fgf2g2=b2d2+c2e2+2bcde=pa+r(xz+yk+2xyzk). Từ đó ta có xyzk là một số hữu tỉ nên cũng là một số nguyên. Do đó ta có được: pa+rf2g2vp(f2g2)a+r. Tuy nhiên: vì AiAjvà Ai1Ai+1 là các đường chéo nên vp(f2)a1vp(g2)r+1pr+1g2

 

Tức là khi đó pr+1AiAj2 với AiAj là một đường chéo và tương tự với các đường chéo khác, ta có được pr+1AiAj2 với mọi ij0<i,jk. Như vậy theo nguyên lí quy nạp, giả thiết được chứng minh. Khi đó theo giả thiết thì pa1AiAj2 với mọi ij và cũng chứng minh tương tự mà paAiAj2 với mọi ij. Đây là điều vô lí ( do ta đã giả sử rằng không có đường chéo nào chia hết cho pa).

 

Do đó k<4, tức là ta sẽ quy về trường hợp đơn giản k=3. Ta có thể chứng minh điều này cách dễ dàng vì các đỉnh A1,A2,A3 có tọa độ nguyên nên dễ dàng chứng minh được 2S là số nguyên.

Hơn nữa theo công thức Hê-rông thì 2S=4a2b2(a2+b2c2)22 (a,b,c là các cạnh của tam giác) nên 4.(2S)2=(4a2b2(a2+b2c2)2)n2. Do n lẻ nên (4,n)=1 do đó n2(2S)2 nên n2S.

Vậy bài toán được chứng minh hoàn toàn.

 


ko thể hiểu đc ổng nói j –  khanhsd0901 28-01-17 03:48 PM

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003