pt <=> 2√2[12cos(x5−π12)−√32sin(x5−π12)]=2[sin(x5+2π3)−sin(3x5+π6)]<=> 2√2[cosπ3.cos(x5−π12)−sinπ3.sin(x5−π12)]=4.cos(2x5+5π12).sin(−x5+π4)
<=> 2√2.cos[π3+(x5−π12)]=4.cos(2x5+5π12).cos[π2−(−x5+π4)]
<=> 2√2.cos(x5+π4)=4.cos(2x5+5π12).cos(x5+π4)
<=> cos(x5+π4)[1−√2.cos(2x5+5π12)]=0
Đến đây bạn làm nốt nhé
