$(1-1)^{2n}=C_{2n}^0-C^1_{2n}+C^2_{2n}-C^3_{2n}+...+C^{2n-2}_{2n}-C^{2n-1}_{2n}+C^{2n}_{2n}=0$=> $C^0_{2n}+C^2_{2n}+C^4_{2n}+...+C^{2n-2}_{2n}=C^1_{2n}+C^3_{2n}+C^5_{2n}+...+C^{2n-1}_{2n}-C^0_{2n}-C^{2n}_{2n}$
Có: $C^0_{2n}=C^{2n}_{2n}=1$
=> $C^0_{2n}+C^2_{2n}+C^4_{2n}+...+C^{2n-2}_{2n}=C^1_{2n}+C^3_{2n}+C^5_{2n}+...+C^{2n-1}_{2n}-2$