⇔xyz(x+y+z+√x2+y2+z2)(x2+y2+z2)(xy+yz+zx)≤3+√39⇔9xyz(x+y+z+√x2+y2+z2)≤(3+√3)(xy+yz+zx)(x2+y2+z2)
Luôn đúng do
*3(x2+y2+z2)(xy+yz+zx)≥3(xy+yz+zx)2≥9xyz(x+y+z)
*√3(x2+y2+z2)(xy+yz+zx)=√x2+y2+z2.√3(x2+y2+z2)(xy+yz+zx)2
≥√x2+y2+z2√3.33√(xyz)2.9.3√(xyz)4=9xyz.√x2+y2+z2