Ta có:√(a+b+c)3(1a+1b+1c)3=√[Σa3+3(a+b)(b+c)(c+a)].[Σ1a3+3(a+b)(b+c)(c+a)(abc)2]
≥√(Σa3)(Σ1a3+3(a+b)(b+c)(c+a)abc
Mà(a+b)(b+c)(c+a)abc=(a+b+c)(ab+bc+ca)abc−1=(a+b+c)(1a+1b+1c−1
Do đó:3(a+b+c)(1a+1b+1c)−3≥3(Σa)(Σ1a)−3√(Σa)(Σ1a)+6
Lại có:(a+b+c)(1a+1b+1c≥9
⇒(√(a+b+c)(1a+1b+1c)−1)3≥5+√(Σa3)(Σ1a3)
⇒đpcm
Dấu''='' xra⇔a=b=c