Cho $x;y;z>1$ và $xy+yz+zx=xyz$
Tìm min : $A=\Sigma \frac{x-1}{y^2}$
Đặt a = 1/x; b = 1/y; c = 1/z thì a + b + c = 1; a,b,c > 0 
P = b²(1/a - 1) + c²(1/b - 1) + a²(1/c - 1) 
= (a²/c + b²/a + c²/b) - (a² + b² + c²) 
= (a + b + c)(a²/c + b²/a + c²/b) - (a² + b² + c²) (vì a + b + c = 1) 
= (a³/c + b³/a + c³/b) + (a²b/c + b²c/a + c²a/b) 

Áp dụng bđt Cosi cho 2 số dương: 
a³/c + ca ≥ 2a² 
b³/a + ab ≥ 2b² 
c³/b + bc ≥ 2c² 
=> a³/c + b³/a + c³/b + (ab + bc + ca) ≥ 2(a² + b² + c²) 
hay a³/c + b³/a + c³/b ≥ 2(a² + b² + c²) - (ab + bc + ca) (♥) 

Cũng theo Cosi: 
a²b/c + bc ≥ 2ab 
b²c/a + ca ≥ 2bc 
c²a/b + ab ≥ 2ca 
=> a²b/c + b²c/a + c²a/b + (ab + bc + ca) ≥ 2(ab + bc + ca) 
hay a²b/c + b²c/a + c²a/b ≥ ab + bc + ca (♦) 
Từ (♥) và (♦) ta có: 
P = (a³/c + b³/a + c³/b) + (a²b/c + b²c/a + c²a/b) ≥ 2(a² + b² + c²) - (ab + bc + ca) + (ab + bc + ca) 
hay P ≥ 2(a² + b² + c²) 
mà ta có bđt quen thuộc sau: 
a² + b² + c² ≥ (a + b + c)²/3 
=> 2(a² + b² + c²) ≥ 2/3 
Do đó: min P = 2/3, xảy ra khi a = b = c = 1/3 hay x = y = z = 3 •
ủa? có trên đó r ak? biết vậy e khỏi up! -_-! –  Confusion 07-04-16 08:19 PM
cop y sì trên yahoo –  @_@ *Mèo9119* @_@ 07-04-16 08:02 PM
$xy+yz+zx=xyz$ => $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
Đặt $\frac{1}{x}=a, \frac{1}{y}=b, \frac{1}{z}=c$   $(a,b,c>0)$
 $A=b^2(\frac{1}{a}-1)+c^2(\frac{1}{b}-1)+a^2(\frac{1}{c}-1)$
$=(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b})-(a^2+b^2+c^2)$
$=(a+b+c)(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b})-(a^2+b^2+c^2)$  (do a+b+c=1)
$=(\frac{a^3}{c}+\frac{b^3}{a}+\frac{c^3}{b})+(\frac{a^2b}{c}+\frac{b^2c}{a}+\frac{c^2a}{b})$
Theo BĐT Cauchy: 
$\frac{a^3}{c}+ca \geq 2a^2$
$\frac{b^3}{a}+ab \geq 2b^2$
$\frac{c^3}{b}+bc \geq 2c^2$
=> $\frac{a^3}{c}+\frac{b^3}{a}+\frac{c^3}{b}+ab+bc+ca \geq 2(a^2+b^2+c^2)$
=> $\frac{a^3}{c}+\frac{b^3}{a}+\frac{c^3}{b} \geq 2(a^2+b^2+c^2)-(ab+bc+ca) $ (1)
$\frac{a^2b}{c}+bc \geq 2ab$
$\frac{b^2c}{a}+ca \geq 2bc$
$\frac{c^2a}{b}+ab \geq 2ca$
=> $\frac{a^2b}{c}+\frac{b^2c}{a}+\frac{c^2a}{b} \geq 2(ab+bc+ca)-(ab+bc+ca)=ab+bc+ca$ (2)
từ (1) và (2) => $A \geq 2(a^2+b^2+c^2)-(ab+bc+ca)+ab+bc+ca=2(a^2+b^2+c^2)$
theo BĐT Bunhia có: $(a+b+c)^2 \leq 3(a^2+b^2+c^2)$
=> $2(a^2+b^2+c^2) \geq \frac{2}{3}$
$A_{min}=\frac{2}{3}$ tại $a=b=c=\frac{1}{3}$ hay $x=y=z=3$
thanks chị nhìu! ^_^! –  Confusion 07-04-16 08:19 PM

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003