Theo mình BĐT đúng phải là: 8(x3+y3+z3)2≥9(x2+yz)(y2+xz)(z2+xy)
Xét hiệu:
P=8(x3+y3+z3)2−9(x2+yz)(y2+xz)(z2+xy)
=8(x6+y6+z6)+7(x3y3+y3z3+z3x3)−9(x4yz+xy4z+xyz4)−18x2y2z2
Áp dụng BĐT Cauchy ta có:
3(x6+x3y3+x3z3)≥9x4yz
3(y6+x3y3+y3z3)≥9xy4z
3(z6+x3z3+y3z3)≥9xyz4
5(x6+y6+z6)≥15x2y2z2
x3y3+y3z3+z3x3≥3x2y2z2
⇒8(x6+y6+z6)+7(x3y3+y3z3+z3x3)≥9(x4yz+xy4z+xyz4)+18x2y2z2.
⇔8(x3+y3+z3)2≥9(x2+yz)(y2+xz)(z2+xy)