|
{x(x+y)+y2=4x−1(1)x(x+y)2−2y2=7x+2(2) Từ pt (1) ta thay neu x=0 thi (1)<=>y2=−1=>hpt vo nghiem Ta chia 2 ve cua hpt cho x≠0 ta dc hpt {x+y+y2x=4−1x(x+y)2−2y2x=7+2x <=>{(x+y)+y2x+1x=4(x+y)2−2(y2x+1x)=7(*) Đặt a=x+y b=y2x+1x hpt(*) tro thanh {a+b=4a2−2b=7 <=>{b=4−aa2+2a−15=0 <=>{b=4−aa=3hoaca=−5 <=>{a=3b=1 v {a=−5b=9 .{a=3b=1 <=>{x+y=3y2+1x=1 <=>{x=3−yy2+y−2=0 <=>{x=3−yy=1hoacy=−2 <=>{x=2y=1 v {x=5y=−2 .{a=−5b=9 <=>{x+y=−5y2+1x=9 <=>{x=−5−yy2+9y+46=0(hptVN) Vay S={(2;1);(5;-2)}
|