Xét f(x)=−(1−x)2n+1
f(x)=−(2n+1∑i=0Ci2n+1(−1)ixi)
f′(x)=−(2n+1∑i=1Ci2n+1(−1)iixi−1)
f′(x)=1.x0C12n+1−2.x1C22n+1+3x2C32n+1+....+(−1)iixi−1Ci2n+1+...+(2n+1)x2nC2n+12n+1
thay x = 2 ta được
f′(2)=1.20C12n+1−2.21C22n+1+322C32n+1+....+(−1)iixi−1Ci2n+1+...+(2n+1)22nC2n+12n+1
Mặt khác f′(x)=(2n+1)(1−x)2n
nên f′(2)=(2n+1)(1−2)2n=(2n+1)
Vậy 1.20C12n+1−2.21C22n+1+322C32n+1+....+(−1)iixi−1Ci2n+1+...+(2n+1)22nC2n+12n+1=(2n+1)=2005
suy ra n=1002
Nhớ vote nhé