Cho ba số thực dương $x,\,y,\,z$ thỏa mãn điều kiện $xyz=1.$ Chứng minh rằng: $$\dfrac{x^3+1}{\sqrt{x^4+y+z}}+\dfrac{y^3+1}{\sqrt{y^4+z+x}}+\dfrac{z^3+1}{\sqrt{z^4+x+y}}\geq2\sqrt{xy+yz+zx}$$
Ta có:
     $2\sqrt{(x^4+y+z)(xy+xz+yz)}$
$=2\sqrt{[x^4+xyz(y+z)][xy+yz+zx]}$
$=2\sqrt{(x^3+y^2z+yz^2)(x^2y+x^z+xyz)}$
$\le x^3+y^2z+yz^2+x^2y+x^z+xyz$
$=(x+y+z)(x^2+yz)$
$=\dfrac{(x+y+z)(x^3+1)}{x}$
Suy ra: $\dfrac{x^3+1}{\sqrt{x^4+y+z}}\ge\dfrac{2x\sqrt{xy+yz+zx}}{x+y+z}$
Tương tự: $\dfrac{y^3+1}{\sqrt{x+y^4+z}}\ge\dfrac{2y\sqrt{xy+yz+zx}}{x+y+z};\dfrac{z^3+1}{\sqrt{x+y+z^4}}\ge\dfrac{2z\sqrt{xy+yz+zx}}{x+y+z}$
Cộng 3 BĐT trên lại ta được đpcm.
Dấu bằng xảy ra khi: $x=y=z=1$
Đáp án và bình luận chi tiết tại ĐÂY

Hướng dẫn tư duy:

Bạn đọc sẽ rất khó hiểu và đặt câu hỏi "Tại sao lại làm như vậy?" nếu không có hướng dẫn tư duy sau đây:

$\ 2\sqrt {xy + yz + zx}  = \frac{{2\left( {x + y + z} \right)\sqrt {xy + yz + zx} }}{{x + y + z}} = \frac{{2x\sqrt {xy + yz + zx} }}{{x + y + z}} + \frac{{2y\sqrt {xy + yz + zx} }}{{x + y + z}} + \frac{{2z\sqrt {xy + yz + zx} }}{{x + y + z}}.$

Như vậy biểu thức nào xuất hiện biến x cả trên tử và dưới mẫu ta ghép với $\ \frac{{2x\sqrt {xy + yz + zx} }}{{x + y + z}}$ (Còn lại tương tự).

Và ta sẽ đi chứng minh các bất đẳng thức "nhỏ" đó, để nghĩ là cộng 3 BĐT cùng chiều lại.



Giải:

Ta sẽ chứng minh: $\ \frac{{{x^3} + 1}}{{\sqrt {{x^4} + y + z} }} \ge \frac{{2x\sqrt {xy + yz + zx} }}{{x + y + z}}.$

Thật vậy, $\ 2x\sqrt {\left( {xy + yz + zx} \right)\left( {{x^4} + y + z} \right)}  = 2\sqrt {\left( {{x^2}y + xyz + z{x^2}} \right)\left( {{x^5} + xy + xz} \right)} .$

$\  = 2\sqrt {\left( {{x^3}y + {x^2}yz + {x^3}z} \right)\left[ {{x^4} + \left( {y + z} \right)xyz} \right]}  = 2\sqrt {\left( {{x^3}y + {x^2}yz + {x^3}z} \right)\left( {{x^4} + x{y^2}z + xy{z^2}} \right)} .$

$\ \mathop { \le \,}\limits^{Cauchy} {x^3}y + {x^2}yz + {x^3}z + {x^4} + x{y^2}z + xy{z^2} = {x^3}\left( {x + y + z} \right) + xyz\left( {x + y + z} \right) = \left( {{x^3} + 1} \right)\left( {x + y + z} \right).$

$\  \Rightarrow \frac{{{x^3} + 1}}{{\sqrt {{x^4} + y + z} }} \ge \frac{{2x\sqrt {xy + yz + zx} }}{{x + y + z}}.$ Tương tự: $\ \frac{{{y^3} + 1}}{{\sqrt {{y^4} + z + x} }} \ge \frac{{2y\sqrt {xy + yz + zx} }}{{x + y + z}};\,\frac{{{z^3} + 1}}{{\sqrt {{z^4} + x + y} }} \ge \frac{{2z\sqrt {xy + yz + zx} }}{{x + y + z}}.$

Cộng 3 BĐT lại ta được:

$\ \frac{{{x^3} + 1}}{{\sqrt {{x^4} + y + z} }} + \frac{{{y^3} + 1}}{{\sqrt {{y^4} + z + x} }} + \frac{{{z^3} + 1}}{{\sqrt {{z^4} + x + y} }} \ge \frac{{2x\sqrt {xy + yz + zx} }}{{x + y + z}} + \frac{{2y\sqrt {xy + yz + zx} }}{{x + y + z}} + \frac{{2z\sqrt {xy + yz + zx} }}{{x + y + z}} = 2\sqrt {xy + yz + zx} .$

Vậy BĐT đã được chứng minh. 


Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003