*) Với n=2k, ta có:
A=23n+1=232k+1=29k+1
Ta có: 9k≡1 (mod 8) ⇒9k=8n+1
⇒A=28n+1+1=2.256n+1≡3 (mod 17) vì 256≡1 (mod 17).
*) Với n=2k+1, ta có:
A=23n+1=232k+1+1=23.9k+1
Ta có: 3.9k≡3 (mod 8) ⇒3.9k=8m+3
⇒A=28m+3+1=8.256m+1≡9 (mod 17) vì 256≡1 (mod 17).
Vậy: 23n+1 không chia hết cho 17 với mọi n∈N