|
Ta có $\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}=\frac{2\left (\sqrt{k+1} - \sqrt{k}\right )}{k+1-k}=2\left (\sqrt{k+1} - \sqrt{k}\right )$ Suy ra $\frac{1}{\sqrt{1}}>2\left (\sqrt{2} - \sqrt{1}\right )$ $\frac{1}{\sqrt{2}}>2\left (\sqrt{3} - \sqrt{2}\right )$ $...$ $\frac{1}{\sqrt{2005}}>2\left (\sqrt{2006} - \sqrt{2005}\right )$ cộng theo từng vế các BDT này ta có đpcm.
|