Ta có
$\dfrac{1}{1.3} =\dfrac{1}{2}\bigg (1 - \dfrac{1}{3}\bigg )$
$\dfrac{1}{3.5} =\dfrac{1}{2}\bigg (\dfrac{1}{3} - \dfrac{1}{5}\bigg )$
....
$\dfrac{1}{(2n-1).(2n+1)} =\dfrac{1}{2}\bigg (\dfrac{1}{2n-1} - \dfrac{1}{2n+1}\bigg )$
Vậy $\dfrac{1}{1.3} +\dfrac{1}{3.5} +... +\dfrac{1}{(2n-1).(2n+1)} = \dfrac{1}{2}\bigg (1-\dfrac{1}{2n+1} \bigg )=\dfrac{2n}{2(2n+1)} =A$
$\lim \limits_{n\to 1} A = \dfrac{1}{3}$