Cho 3số thực dương  a,b,c thỏa mãn $28(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}})=4(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})+2013$.
Tính giá trị lớn nhất  của P= $\frac{1}{\sqrt{5a^{2}+2ab+b^{2}}}+\frac{1}{\sqrt{5b^{2}+2bc+c^{2}}}+\frac{1}{\sqrt{5c^{2}+2ac+a^{2}}}$
minh nghi bai nay dai day ai lam di dai the kia biet cach ma danh thi ..... –  thiensugacoi_95 11-05-13 09:15 PM
Từ giả thiết ta có:
$28(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2})=4(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca})+2013\le4(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2})+2013$
$\Rightarrow \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le\dfrac{671}{8}$
Ta có:
$\dfrac{1}{\sqrt{5a^2+2ab+b^2}}=\dfrac{8\sqrt3}{\sqrt{671}}\sqrt{\dfrac{1}{5a^2+2ab+b^2}.\dfrac{671}{192}}$
                                         $\le\dfrac{4\sqrt3}{\sqrt{671}}\left(\dfrac{1}{5a^2+2ab+b^2}+\dfrac{671}{192}\right)$
                                         $\le\dfrac{4\sqrt3}{\sqrt{671}}\left[\dfrac{1}{64}\left(\dfrac{5}{a^2}+\dfrac{2}{ab}+\dfrac{1}{b^2}\right)+\dfrac{671}{192}\right]$
                                         $=\dfrac{\sqrt3}{16\sqrt{671}}\left(\dfrac{5}{a^2}+\dfrac{2}{ab}+\dfrac{1}{b^2}\right)+\dfrac{\sqrt{671}}{16\sqrt3}$
Tương tự: $\dfrac{1}{\sqrt{5b^2+2bc+c^2}}\le\dfrac{\sqrt3}{16\sqrt{671}}\left(\dfrac{5}{b^2}+\dfrac{2}{bc}+\dfrac{1}{c^2}\right)+\dfrac{\sqrt{671}}{16\sqrt3}$
                   $\dfrac{1}{\sqrt{5c^2+2ca+a^2}}\le\dfrac{\sqrt3}{16\sqrt{671}}\left(\dfrac{5}{c^2}+\dfrac{2}{ca}+\dfrac{1}{a^2}\right)+\dfrac{\sqrt{671}}{16\sqrt3}$
Cộng các BĐT trên ta được:
$P\le\dfrac{6\sqrt3}{16\sqrt{671}}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+\dfrac{2\sqrt3}{16\sqrt{671}}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+\dfrac{3\sqrt{671}}{16\sqrt3}$
     $\le\dfrac{\sqrt3}{2\sqrt{671}}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+\dfrac{\sqrt{2013}}{16}\le\dfrac{\sqrt{2013}}{8}$
Vậy $\max P=\dfrac{\sqrt{2013}}{8} \Leftrightarrow a=b=c=\dfrac{2\sqrt6}{\sqrt{671}}$
dau bang xay ra khi a=b=c khi thay vao pt da cho thi ra can2013/(6can2) ma –  thiensugacoi_95 11-05-13 10:13 PM
$tu  gia  thiet  va  bdt  A= \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\geq \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}  ta  co$
$  28A-2013\leq 4A<=> A\leq \frac{2013}{24}$
$ap  dung  bdt  BCS   co   P\leq 3(\frac{1}{5a^{2}+2ab+b^{2}}+\frac{1}{5b^{2}+2bc+c^{2}}+\frac{1}{5c^{2}+2ac+a^{2}})$
$\frac{1}{5a^{2}+2ab+b^{2}}\leq \frac{1}{4}(\frac{1}{4a^{2}}+\frac{1}{(a+b)^{2}})\leq \frac{1}{16a^{2}}+\frac{1}{16ab}$
$ tu  do  tuong   tu  vs  2  hang  tu  kia  dk  $
$P\leq \frac{1}{16}(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac})=\frac{A}{16}+\frac{28A-2013}{4.16}=\frac{A}{2}+\frac{2013}{64}\leq \frac{4697}{64}$
$vay  Pmax= \frac{4697}{64}   dat    dk   khi       a=b=c=\frac{\sqrt{2013} }{6\sqrt{2} }$

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003