|
PT $\Leftrightarrow \cos3x +\sin7x =1-\cos(\dfrac{\pi}{2} +5x) -\left ( 1+\cos 9x\right )$ $\Leftrightarrow \cos3x +\sin7x =-\cos(\pi-(\dfrac{\pi}{2}-5x ))-\cos 9x$ $\Leftrightarrow \cos3x +\sin7x =\cos(\dfrac{\pi}{2}-5x ) -\cos 9x$ $\Leftrightarrow \cos3x +\sin7x =\sin 5x-\cos 9x$ $\Leftrightarrow \cos3x +\cos 9x=\sin 5x-\sin7x $ $\Leftrightarrow 2\cos6x \cos 3x=-2\cos6x \sin x $ $\Leftrightarrow \left[ {\begin{matrix} \cos6x =0\\ \cos3x =\sin(-x) \end{matrix}} \right. $ $\Leftrightarrow \left[ {\begin{matrix} \cos6x =0\\ \cos3x =\cos(\dfrac{\pi}{2}+x) \end{matrix}} \right. $
|