|
8) \mathop {\lim }\limits_{x \to -\infty }\dfrac{\sqrt{x^2-7x+12}}{3\left| {x} \right|-17}=\mathop {\lim }\limits_{x \to -\infty }\dfrac{\sqrt{x^2-7x+12}}{-3x-17}, do x \to -\infty\Rightarrow x < 0. =\mathop {\lim }\limits_{x \to -\infty
}\dfrac{\dfrac{\sqrt{x^2-7x+12}}{x}}{\dfrac{-3x-17}{x}}=\mathop {\lim
}\limits_{x \to -\infty
}\dfrac{-\sqrt{1+\dfrac{12}{x^2}-\dfrac{7}{x}}}{-\dfrac{17}{x}-3}=\dfrac{1}{3}
|