|
8) $\mathop {\lim }\limits_{x \to -\infty }$$\dfrac{\sqrt{x^2-7x+12}}{3\left| {x} \right|-17}=\mathop {\lim }\limits_{x \to -\infty }\dfrac{\sqrt{x^2-7x+12}}{-3x-17}$, do $x \to -\infty\Rightarrow x < 0.$ $=\mathop {\lim }\limits_{x \to -\infty
}$$\dfrac{\dfrac{\sqrt{x^2-7x+12}}{x}}{\dfrac{-3x-17}{x}}=\mathop {\lim
}\limits_{x \to -\infty
}\dfrac{-\sqrt{1+\dfrac{12}{x^2}-\dfrac{7}{x}}}{-\dfrac{17}{x}-3}=\dfrac{1}{3}$
|