|
BPT ⟺5x−4+√x2+24−√x2+35>0 ⟺(5x−5)+(√x2+24−5)−(√x2+35−6)>0 ⟺5(x−1)+x2−1√x2+24+5−x2−1√x2+35+6>0 ⟺(x−1)(5+x+1√x2+24+5+−x−1√x2+35+6)>0 ⟺(x−1)(3+√x2+24+x+6√x2+24+5+√x2+35−x+5√x2+35+6)⏟A>0 Chú ý rằng √x2+24+x+6>√x2+x=|x|+x≥0 √x2+35−x+5>√x2−x=|x|−x≥0 Như vậy A>0⟺x>1.
|